×

Uncertainty principles for the Hankel-Gabor transform. (English) Zbl 1436.42011

Summary: In this paper, we prove an analogue of a time-frequency localization theorem for orthonormal sequences in \(L_{{\mu_\alpha}}^2(\mathbb{R}_+)\). As a consequence, we obtain an analogue of Shapiro’s umbrella theorem for the Hankel-Gabor transform \(V_g\). We also prove a mean dispersion inequality for \(V_g\). Finally, we get a strong version of the uncertainty inequality for orthonormal sequences of \(L_{{\mu_\alpha}}^2(\mathbb{R}_+)\).

MSC:

42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
44A35 Convolution as an integral transform
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
Full Text: DOI

References:

[1] Benedetto, J. J., On frame decompositions, sampling and uncertainty principle inequalities, in: Wavelets: Mathematics and Applications, Studies in Advanced Mathematics, 247-304 (1994), Boca Raton: CRC Press, Boca Raton · Zbl 1090.94516
[2] Bowie, P. C., Uncertainty inequalities for Hankel transforms, SIAM J. Math. Anal., 2, 601-606 (1971) · Zbl 0235.44002 · doi:10.1137/0502059
[3] Bonami, A.; Demange, B.; Jaming, P., Hermite functions and uncertainty principles for the Fourier and the Gabor transforms, Rev Mat lberoamericana, 19, 23-55 (2003) · Zbl 1037.42010 · doi:10.4171/RMI/337
[4] Bonami, A.; Demange, B., A survey on uncertainty principles related to quadratic forms, Collect. Math., 2, 136 (2006) · Zbl 1107.30021
[5] Czaja, W.; Gigante, G., Continuous Gabor transform for strong hypergroups, J. Fourier Anal. Appl., 9, 321-339 (2003) · Zbl 1037.42031 · doi:10.1007/s00041-003-0017-x
[6] Folland, G. B.; Sitaram, A., The uncertainty principle: A mathematical survey, J. Fourier Anal. Appl., 3, 207-238 (1997) · Zbl 0885.42006 · doi:10.1007/BF02649110
[7] Ghobber, S.; Omri, S., Time-frequency concentration of the windowed Hankel transform, Integral Transforms Spec. Funct., 25, 481-496 (2014) · Zbl 1293.42005 · doi:10.1080/10652469.2013.877009
[8] Ghobber, S., Phase space localization of orthonormal sequences in L_α^2(ℝ_+), Journal of Approximation Theory, 189, 123-136 (2015) · Zbl 1303.42015 · doi:10.1016/j.jat.2014.10.008
[9] Havin, V.; Jöricke, B., The uncertainty principle in harmonic analysis (1994), Berlin: Springer-Verlag, Berlin · Zbl 0827.42001
[10] Jaming, Ph; Powell, A. M., Uncertainty principles for orthonormal sequences, J. Funct. Anal., 243, 611-630 (2007) · Zbl 1119.42012 · doi:10.1016/j.jfa.2006.09.001
[11] Malinnikova, E., Orthonormal sequences in L^2(ℝ^d) and time frequency localization, J. Fourier Anal. Appl., 16, 983-1006 (2010) · Zbl 1210.42020 · doi:10.1007/s00041-009-9114-9
[12] Powell, A. M., Time-frequency mean and variance sequences of orthonormal bases, J. Fourier Anal. Appl., 11, 375-387 (2005) · Zbl 1087.42003 · doi:10.1007/s00041-005-3082-5
[13] Ricaud, B.; Torrsani, B., A survey of uncertainty principles and some signal processing applications, Adv. Comput. Math., 40, 629-650 (2014) · Zbl 1330.94023 · doi:10.1007/s10444-013-9323-2
[14] Rösler, M.; Voit, M., An uncertainty principle for Hankel transforms, Proc. Amer. Math. Soc., 127, 183-194 (1999) · Zbl 0910.44003 · doi:10.1090/S0002-9939-99-04553-0
[15] Schwartz, A. L., An inversion theorem for Hankel transforms, Pro. Amer. Math. Soc., 22, 3, 713-717 (1969) · Zbl 0179.16701 · doi:10.1090/S0002-9939-1969-0243294-0
[16] H. S. Shapiro, Uncertainty principles for bases in L^2(ℝ), Unpublished Manuscript.
[17] Stempak, K., A note on Zemanian spaces, Extracta Math., 12, 33-40 (1997) · Zbl 0889.46042
[18] Wong, M. W., Wavelet transforms and localization operators (2002) · Zbl 1016.42017
[19] Watson, G. N., A treatise on the theory of Bessel functions (1944), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0063.08184
[20] Zitomirski, Y. I., Cauchys problem for systems of linear partial differential equations with differential operators of Bessel type, Mat. Sb. (N.S.), 36, 299-310 (1955) · Zbl 0064.34404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.