×

A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries. (English) Zbl 1436.37083

The aim of this paper is to apply an improved Tu scheme [G. Tu, J. Math. Phys. 30, No. 2, 330–338 (1989; Zbl 0678.70015)] to obtain two isospectral- and nonisospectral hierarchies of evolution equations.
An isospectral and nonisospectral problem related to isospectral and nonisospectral integrable hierarchies is presented. This includes the generalized Korteweg-de Vries (KdV) equations and the cylinder-KdV equation with variable coefficients. One of the generalized KdV equations generalizes a known variable-coefficient integrable equation. The authors obtain for this equation infinite sets of symmetries and conserved densities.
As a second application, an isospectral and nonisospectral AKNS-Kaup-Newell soliton hierarchy is derived from a proper spectral problem whose symmetries and \(\tau\)-symmetries are found by applying Lie group analysis. A special reduction gives a generalized sine-Gordon equation.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K06 General theory of infinite-dimensional Hamiltonian and Lagrangian systems, Hamiltonian and Lagrangian structures, symmetries, conservation laws
37K25 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with topology, geometry and differential geometry
35Q51 Soliton equations
70G65 Symmetries, Lie group and Lie algebra methods for problems in mechanics

Citations:

Zbl 0678.70015
Full Text: DOI

References:

[1] Fan, E. G., Quasi-periodic waves and asymptotic propertyfor the asymmetrical Nizhnik- Norikov-Veselov equation, J.Phys. A., 42, 1751, Article 095206 pp. (2009) · Zbl 1165.35044
[2] Fokas, A. S.; Fuchssteiner, B., Phys. Lett. A, 86, 341 (1981)
[3] Geng, X. G.; Ma, W. X., A multipotential generalization ofthe nonlinear diffusion equation, J. Phys. Soc. Japan, 69, 4, 985 (2000) · Zbl 1058.37523
[4] Hu, X. B., A powerful approach to generate newintegrable systems, J. Phys. A., 27, 2497 (1994) · Zbl 0838.58018
[5] Li, Y. S., Symmetries of a evolution equation with the variable spectral parameters, Chin. Sci. Bull., 19, 1449 (1986), (in Chinese)
[6] Li, Y. S.; Cheng, Y., Symmetries and conserved quantities of new KdV hierarchy of equations, Sientia Sinica A, 1, 1-7 (1988), (in Chinese)
[7] Li, Y. S.; Zhu, G. C., New set of symmetries of the integrable equations, Lie algebra and non-isospectral evolution equations: II. AKNS system, J. Phys. A: Math. Gen., 19, 3713-3725 (1986) · Zbl 0658.35077
[8] Lou, S. Y., Integrable models constructed from the symmetries of the modified KdV equation, Phys. Lett. B, 302, 261-264 (1993)
[9] Lou, S. Y.; Yao, R. X., Primary branch solutions of first order autonomous scalar partial diffential equation via Lie symmetry approach, J. Nonlinear Math. Phys., 24, 3, 379-392 (2017) · Zbl 1420.35025
[10] Lou, S. Y.; Yao. Invariant functions, R. X., Symmetries and primary branch solutions of first order autonomous systems, Commun. Theor. Phys., 68, 21-28 (2017) · Zbl 1370.35024
[11] Ma, W. X., K symmetries and \(\tau\) symmetries of evolution equations and their Lie algebras, J. Phys. A: Math. Gen., 23, 2707-2716 (1990) · Zbl 0722.35078
[12] Ma, W. X., The algebraic structures of isospectral Lax operators and applications to integrable equations, J. Phys. A: Math. Gen., 25, 5329-5343 (1992) · Zbl 0782.35072
[13] Ma, W. X., An approach for constructing nonisospectralhierarchies of evolution equations, J. Phys. A: Math. Gen., 25, L719 (1992) · Zbl 0754.35145
[14] Ma, W. X., A hierarchy of Liouville integrablefinite-dimensional Hamiltonian systems, Appl. Math. Mech., 13, 4, 369 (1992) · Zbl 0757.58017
[15] Ma, W. X., Lax representations and Lax operator algebras of isospectral and nonisospectral hierarchies of evolution equations, J. Math. Phys., 33, 2464-2476 (1992) · Zbl 0764.35091
[16] Ma, W. X., A new hierarchy of Liouville integrablegeneralized Hamiltonian equations and its reduction, Chinese J. Contemp. Math., 13, 1, 79 (1992) · Zbl 0765.58011
[17] Ma, W. X., A simple scheme for generating nonisospectral flows from the zero curvature representation, Phys. Lett. A, 179, 179-185 (1993)
[18] Ma, W. X., Conservation laws of discrete evolution equations by symmetries and adjoint symmetries, Symmetry, 7, 714-725 (2015) · Zbl 1381.37080
[19] Ma, W. X., A search for lump solutions to a combined fourth-order nonlinear PDE in (2+1)-dimensions, J. Appl. Anal. Comput., 9, 1319-1332 (2019) · Zbl 1464.35287
[20] Ma, W. X., Interaction solutions to Hirota-Satsuma-Ito equation in (2+1)-dimessions, Front. Math. China, 14, 619-629 (2019) · Zbl 1421.35314
[21] Ma, W. X., Long-time asymptotics of a three-component coupled mkdv system, Mathematics, 7, 7, 573 (2019)
[22] Ma, W. X.; Zhou, R. G., A coupled AKNS-Kaup-Newell soliton hierarchy, J. Math. Phys., 40, 9, 4419-4428 (1999) · Zbl 0947.35118
[23] Ma, W. X.; Zhou, R. G., Adjoint symmetry constaints of multicomponent akns equations, Chin. Ann. Math. Ser. B, 23, 3, 373-384 (2002) · Zbl 1183.37109
[24] Olver, P. J., Applications of Lie Groups to Differential Equations (1993), Springer: Springer New York · Zbl 0785.58003
[25] Qiao, Z. J., Algebraic structure of the operator related to stationary systems, Phys. Lett. A, 206, 347 (1995) · Zbl 1020.35530
[26] Qiao, Z. J., New hierarchies of isospectral and non-isospectral integrable NLEEs derived from the Harry-Dym spectral problem, Physica A, 252, 377 (1998)
[27] Tian. New strong symmetries, C., Symmetries and Lie algebra of the Burgers equation, Sientia Sinica A, 10, 1009-1018 (1987), (in Chinese)
[28] Tu, G. Z., On Liouville integrability of zero-curvatureequations and the Yang hierarchy, J. Phys. A: Math. Gen., 22, 2375-2386 (1989) · Zbl 0697.58025
[29] Tu, G. Z., The trace identity, a powerful tool forconstructing the Hamiltonian structure of integrable systems, J. Math. Phys., 30, 2, 330 (1989) · Zbl 0678.70015
[30] Tu, G. Z., Infinitesimal canonical transformations ofgeneralised Hamiltonian equations, J. Phys. A: Math. Gen., 15, 277 (1992) · Zbl 0481.70025
[31] Zhang, Y. F.; Rui, W. J., A few continuous and discrete dynamical systems, Rep. Math. Phys., 70, 19-32 (2016) · Zbl 1351.37254
[32] Zhang, Y. F.; Tam, H. W., Discussion on integrable properties for higher-dimensional variable-coefficient nonlinear partial differential equations, J. Math. Phys., 54, Article 013516 pp. (2013) · Zbl 1298.37063
[33] Zhang, Y. F.; Tam, H. W., Generation of nonlinear evolution equations by reductions of the self-dual Yang-Mills equations, Commun. Theor. Phys., 61, 203 (2014) · Zbl 1284.53029
[34] Zhang, Y. F.; Tam, H. W.; Guo, F. K., Invertible linear transformations and the Lie algebras, Commun. Nonlinear Sci. Numer. Simul., 13, 682 (2008) · Zbl 1221.37147
[35] Zhang, Y. F.; Zhang, H. Q., A direc method for integrable couplings of TD hierarchy, J. Math. Phys., 43, 1, 466 (2002) · Zbl 1052.37055
[36] Zhang, Y. F.; Zhang, X. Z., Two kinds of discrete integrable hierarchies of evolution equations and some algebraic-geometric solutions, Adv. Difference Equ., 2017, 72 (2017) · Zbl 1422.37049
[37] Zhang, Y. F.; Zhang, X. Z.; Dong. Infinite conservation laws, H. H., Continuous symmetries and invariant solutions of some discrete integrable equations, Commun. Theor. Phys., 68, 755-760 (2017) · Zbl 1382.37068
[38] Zhang, Y. F.; Zhang, X. Z.; Wang, Y.; Liu, J. G., Upon generating discrete expanding integrable models of the Toda lattice systems and infinite conservation laws, Z. Naturf. a, 72, 1, 77-86 (2017)
[39] Zhang, Y. F.; Zhao, Z. L., Lie-Backlund symmetries explicit solutions and conservation laws of Drinfeld-Sokolov-Wilson system, Bound. Value Probl., 2017, 154 (2017) · Zbl 1374.76191
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.