×

Dynamics of abundant solutions to the \((3 + 1)\)-dimensional generalized yu-Toda-Sasa-Fukuyama equation. (English) Zbl 1436.35066

Summary: With the aid of the direct bilinear method, the formula of \(N\)-soliton solution to the generalized \((3 + 1)\)-dimensional Yu-Toda-Sasa-Fukuyama (gYTSF) equation is succinctly obtained. By means of long-wave limit method on \(2 M\)-soliton solutions under special parameter constraints, \(M\)-order lumps can be successfully constructed. Furthermore, the propagation orbit, velocity and extremum of the \(1\)-order lump solutions on \((x,y)\) plane are studied in detail. Finally, we investigate three types of hybrid solutions, which describe interaction between breathers and solitons, or between lumps and solitons or breathers. These collisions are elastic, which do not lead any changes of amplitudes, velocities and shapes of the solitons, breathers and lumps after interaction.

MSC:

35C08 Soliton solutions
35C05 Solutions to PDEs in closed form
35G25 Initial value problems for nonlinear higher-order PDEs
Full Text: DOI

References:

[1] Yu, F. J.; Li, L., Inverse scattering transformation and soliton stability for a nonlinear Gross-Pitaevskii equation with external potentials, Appl. Math. Lett., 91, 41-47 (2019) · Zbl 1406.35488
[2] Yu, F. J., Inverse scattering solutions and dynamics for a nonlocal nonlinear Gross-Pitaevskii equation with PT-symmetric external potentials, Appl. Math. Lett., 92, 108-114 (2019) · Zbl 1412.35059
[3] Yu, F. J., A novel non-isospectral hierarchy and soliton wave dynamics for a parity-time-symmetric nonlocal vector nonlinear Gross-Pitaevskii equations, Commun. Nonlinear Sci. Numer. Simul., 78, Article 104852 pp. (2019) · Zbl 1480.35364
[4] Wazwaz, A. M., The Hirota’s bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomtsev-Petviashvili equation, Appl. Math. Comput., 200, 1, 160-166 (2008) · Zbl 1153.65364
[5] Wazwaz, A. M., Multiple-soliton solutions for extended (3+1)-dimensional Jimbo-Miwa equations, Appl. Math. Lett., 64, 21-26 (2017) · Zbl 1353.65109
[6] Xia, T. C.; Chen, X. H.; Chen, D. Y., Darboux transformation and soliton-like solutions of nonlinear Schrödinger equation, Chaos Solitons Fractals, 26, 889-896 (2005) · Zbl 1078.35118
[7] Wang, X.; Chen, Y., Darboux transformations and N-soliton solutions of two (2+1)-dimensional nonlinear equations, Commun. Theor. Phys., 61, 423-430 (2014) · Zbl 1288.35426
[8] Wang, D. S.; Yin, S. J.; Tian, Y.; Liu, Y. F., Integrability and bright soliton solutions to the coupled nonlinear Schrödinger equation with higherorder effects, Appl. Math. Comput., 229, 296-309 (2014) · Zbl 1364.35343
[9] Xu, M. J.; Xia, T. C.; Hu, B. B., Riemann-Hilbert approach and N-soliton solutions for the Chen-Lee-Liu equation, Mod. Phys. Lett. B, 33, 2, Article 1950002 pp. (2019)
[10] Kang, Z. Z.; Xia, T. C., Construction of multi-soliton solutions of the N-coupled Hirota equations in an optical fiber, Chin. Phys. Lett., 36, 11, Article 110201 pp. (2019)
[11] Yin, H. M.; Tian, B.; Chai, J.; Wu, X. Y.; Sun, W. R., Solitons and bilinear Bäcklund transformations for a (3 + 1)-dimensional Yu-Toda-Sasa-Fukuyama equation in a liquid or lattice, Appl. Math. Lett., 58, 178-183 (2016) · Zbl 1381.35158
[12] Yu, S. J.; Toda, K.; Sasa, N.; Fukuyama, T., N soliton solutions to the Bogoyavlenskii-Schiff equation and a quest for the soliton solution in (3 + 1) dimensions, J. Phys. A: Math. Gen., 31, 3337-3347 (1998) · Zbl 0927.35102
[13] Yue, Y. F.; Huang, L. L.; Chen, Y., Localized waves and interaction solutions to an extended (3 + 1)-dimensional Jimbo-Miwa equation, Appl. Math. Lett., 89, 70-77 (2019) · Zbl 1410.35161
[14] Zhang, Y.; Liu, Y. P.; Tang, X. Y., M-lump solutions to a (3 + 1)-dimensional nonlinear evolution equation, Comput. Math. Appl., 76, 592-601 (2018) · Zbl 1420.35335
[15] Wu, H. L.; Song, J. F., Mixed lump-stripe soliton solutions to a dimensionally reduced generalized Jimbo-Miwa equation, Appl. Math. Lett., 90, 181-187 (2019) · Zbl 1407.35059
[16] Ma, Y. L., N-solitons, breathers and rogue waves for a generalized Boussinesq equation, Int. J. Comput. Math. (2019)
[17] Kaup, D. J., The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction, J. Math. Phys., 22, 1176-1181 (1981) · Zbl 0467.35070
[18] Ma, W. X., Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A., 379, 1975-1978 (2015) · Zbl 1364.35337
[19] Lü, X.; Chen, S. T.; Ma, W. X., Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation, Nonlinear Dynam., 86, 523-534 (2016) · Zbl 1349.35007
[20] Manakov, S. V.; Zakharov, V. E.; Bordag, L. A., Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A., 63, 205-206 (1977)
[21] Satsuma, J.; Ablowitz, M. J., Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 20, 1496-1503 (1979) · Zbl 0422.35014
[22] Li, W.; Zhang, Y.; Liu, Y. P., Exact wave solutions for a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation, Comput. Math. Appl., 77, 3087-3101 (2019) · Zbl 1428.74095
[23] Ma, W. X., Comment on the 3+1 dimensional Kadomtsev-Petviashvili equations, Commun. Nonlinear Sci. Numer. Simul., 16, 2663-2666 (2011) · Zbl 1221.35353
[24] Wang, L. Y.; Lou, S. Y., Some special types of solitary wave solutions for the (3+1)-dimensional Kadomtsev-Petviashvilli equation, Commun. Theor. Phys., 33, 683-686 (2000)
[25] Hietarinta, J., A search for bilinear equattons passing Hirota’s three-soliton condition. I. Kdy-type bilinear equations, J. Math. Phys., 28, 1732-1742 (1987) · Zbl 0641.35073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.