×

Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system. (English) Zbl 1436.35041

Summary: This work is devoted to the study of an integro-differential system of equations modelling the genetic adaptation of a pathogen by taking into account both mutation and selection processes. Using the variance of the dispersion in the phenotype trait space as a small parameter we provide a complete picture of the dynamical behaviour of the solutions of the problem. We show that the dynamics exhibits two main and long regimes – those durations are estimated – before the solution finally reaches its long time configuration, the endemic equilibrium. The analysis provided in this work rigorously explains and justifies the complex behaviour observed through numerical simulations of the system.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35R09 Integro-partial differential equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92D10 Genetics and epigenetics
Full Text: DOI

References:

[1] M. Alfaro and M. Veruete, Evolutionary branching via replicator mutator equations, Journal of Dynamics and Differential Equations, (2018), 1-24. · Zbl 1426.92047
[2] O. Bonnefon; J. Coville; G. Legendre, Concentration phenomenon in some non-local equation, Discrete Continuous Dynam. Systems - B, 22, 763-781 (2017) · Zbl 1360.35291 · doi:10.3934/dcdsb.2017037
[3] J.-B. Burie, R. Djidjou-Demasse and A. Ducrot, Asymptotic and transient behaviour for a nonlocal problem arising in population genetics, European Journal of Applied Mathematics, 2018, 1-27. · Zbl 1504.35061
[4] À. Calsina; S. Cuadrado; L. Desvillettes; G. Raoul, Asymptotics of steady states of a selection-mutation equation for small mutation rate, Proc. Math. Roy. Soc. Edinb., 143, 1123-1146 (2013) · Zbl 1293.35341 · doi:10.1017/S0308210510001629
[5] À. Calsina; S. Cuadrado, Stationary solutions of a selection mutation model: The pure mutation case, Mathematical Models and Methods in Applied Sciences, 15, 1091-1117 (2005) · Zbl 1081.92029 · doi:10.1142/S0218202505000637
[6] S. Cuadrado, Equilibria of a predator prey model of phenotype evolution, J. Math. Anal. Appl., 354, 286-294 (2009) · Zbl 1160.92039 · doi:10.1016/j.jmaa.2009.01.002
[7] T. Day; S. Gandon, Applying population-genetic models in theoretical evolutionary epidemiology, Ecology Letters, 10, 876-888 (2007) · doi:10.1111/j.1461-0248.2007.01091.x
[8] T. Day and S. R. Proulx, A general theory for the evolutionary dynamics of virulence, The American Naturalist, 163 (2004), E40-E63.
[9] O. Diekmann; P. E. Jabin; S. Mischler; B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol., 67, 257-271 (2005) · Zbl 1072.92035 · doi:10.1016/j.tpb.2004.12.003
[10] R. Djidjou-Demasse; A. Ducrot; F. Fabre, Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens, Mathematical Models and Methods in Applied Sciences, 27, 385-426 (2017) · Zbl 1360.92077 · doi:10.1142/S0218202517500051
[11] F. Fabre; E. Rousseau; L. Mailleret; B. Moury, Durable strategies to deploy plant resistance in agricultural landscapes, New Phytologist, 193, 1064-1075 (2012) · doi:10.1111/j.1469-8137.2011.04019.x
[12] F. Fabre; E. Rousseau; L. Mailleret; B. Moury, Epidemiological and evolutionary management of plant resistance: optimizing the deployment of cultivar mixtures in time and space in agricultural landscapes, Evol. Appl., 8, 919-932 (2015) · doi:10.1111/eva.12304
[13] S. A. Geritz; J. A. Metz; É. Kisdi; G. Meszéna, Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78, 2024-2027 (1997) · doi:10.1103/PhysRevLett.78.2024
[14] Q. Griette, Singular measure traveling waves in an epidemiological model with continuous phenotypes, Transactions of the American Mathematical Society, 371, 4411-4458 (2019) · Zbl 1408.35207 · doi:10.1090/tran/7700
[15] G. L. Iacono; F. van den Bosch; N. Paveley, The evolution of plant pathogens in response to host resistance: factors affecting the gain from deployment of qualitative and quantitative resistance, J. Theo. Biol., 304, 152-163 (2012) · Zbl 1397.92425 · doi:10.1016/j.jtbi.2012.03.033
[16] C. Lannou, Variation and selection of quantitative traits in plant pathogens, Annu. Rev. Phytopathol., 50, 319-338 (2012) · doi:10.1146/annurev-phyto-081211-173031
[17] S. Lion and S. Gandon, Spatial evolutionary epidemiology of spreading epidemics, Proc. R. Soc. B, 283 (2016).
[18] J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs and J. S. van Heerwaarden, Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction, in Stochastic and Spatial Structures of Dynamical System (eds. S. J. van Strien, S. M. Verduyn Lunel), North-Holland, Amsterdam, 45 (1996), 183-231. · Zbl 0972.92024
[19] P. Meyer-Nieberg, Banach Lattices, Springer-Verlag Berlin Heidelberg, 1991. · Zbl 0743.46015
[20] S. Mirrahimi, B. Perthame, E. Bouin and P. Millien, Population formulation of adaptative meso-evolution: Theory and numerics, in The Mathematics of Darwins Legacy, Springer Basel, Basel, (2011), 159-174. · Zbl 1379.92052
[21] S. Mirrahimi; B. Perthame; J. Y. Wakano, Evolution of species trait through resource competition, J. Math. Biol., 64, 1189-1223 (2012) · Zbl 1279.92060 · doi:10.1007/s00285-011-0447-z
[22] S. Nordmann; B. Perthame; C. Taing, Dynamics of concentration in a population model structured by age and a phenotypical trait, Acta Appl. Math., 155, 197-225 (2018) · Zbl 1398.35251 · doi:10.1007/s10440-017-0151-0
[23] M. Zerner, Quelques propriétés spectrales des opérateurs positifs, Journal of Functional Analysis, 72, 381-417 (1987) · Zbl 0642.47031 · doi:10.1016/0022-1236(87)90094-2
[24] J. Zhan; P. H. Thrall; J. Papaï; L. Xie; J. J. Burdon, Playing on a pathogen’s weakness: Using evolution to guide sustainable plant disease control strategies, Annu. Rev. Phytopathol., 53, 19-43 (2015) · doi:10.1146/annurev-phyto-080614-120040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.