×

Global well-posedness, pattern formation and spiky stationary solutions in a Beddington-DeAngelis competition system. (English) Zbl 1436.35030

Summary: This paper investigates a reaction-advection-diffusion system that describes the evolution of population distributions of two competing species in an enclosed bounded habitat. Here the competition relationships are assumed to be of the Beddington-DeAngelis type. In particular, we consider a situation where first species disperses by a combination of random walk and directed movement along with the population distribution of the second species which disperse randomly within the habitat. We obtain a set of results regarding the qualitative properties of this advective competition system. First of all, we show that this system is globally well-posed and its solutions are classical and uniformly bounded in time. Then we study its steady states in a one-dimensional interval by examining the combined effects of diffusion and advection on the existence and stability of nonconstant positive steady states of the strongly coupled elliptic system. Our stability result of these nontrivial steady states provides a selection mechanism for stable wavemodes of the time-dependent system. Moreover, in the limit of diffusion rates, the steady states of this fully elliptic system can be approximated by nonconstant positive solutions of a shadow system that admits boundary spikes and layers. Furthermore, for the fully elliptic system, we construct solutions with a single boundary spike or an inverted boundary spike, i.e., the first species concentrates on a boundary point while the second species dominates the remaining habitat. These spatial structures model the spatial segregation phenomenon through interspecific competitions. Finally, we perform some numerical simulations to illustrate and support our theoretical findings.

MSC:

35B25 Singular perturbations in context of PDEs
35B35 Stability in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
35B32 Bifurcations in context of PDEs
92D25 Population dynamics (general)
92D40 Ecology
Full Text: DOI

References:

[1] N. D. Alikakos, \(L^p\) bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4, 827-868 (1979) · Zbl 0421.35009 · doi:10.1080/03605307908820113
[2] H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ. Reaction-diffusion systems, Differential Integral Equations, 3, 13-75 (1990) · Zbl 0729.35062
[3] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis. Teubner, Stuttgart, Leipzig, 133, 9-126 (1993) · Zbl 0810.35037 · doi:10.1007/978-3-663-11336-2_1
[4] M. A. Aziz-Alaoui; M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Appl. Math. Lett., 16, 1069-1075 (2003) · Zbl 1063.34044 · doi:10.1016/S0893-9659(03)90096-6
[5] J. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol., 44, 331-340 (1975) · doi:10.2307/3866
[6] H. Berestycki; P.-L Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., 82, 313-345 (1983) · Zbl 0533.35029 · doi:10.1007/BF00250555
[7] E. Beretta; Y. Takeuchi, Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delay, SIAM J. Appl. Math., 48, 627-651 (1988) · Zbl 0661.92018 · doi:10.1137/0148035
[8] R. S. Cantrell; C. Cosner, On the dynamics of predator-prey models with the Beddington-Deangelis functional response, J. Math. Anal. Appl., 257, 206-222 (2001) · Zbl 0991.34046 · doi:10.1006/jmaa.2000.7343
[9] A. Chertock; A. Kurganov; X. Wang; Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5, 51-95 (2012) · Zbl 1398.92033 · doi:10.3934/krm.2012.5.51
[10] C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34, 1701-1745 (2014) · Zbl 1277.35002 · doi:10.3934/dcds.2014.34.1701
[11] C. Cosner; D. DeAngelis; J. S. Ault; D. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56, 65-75 (1999) · Zbl 0928.92031 · doi:10.1006/tpbi.1999.1414
[12] M. G. Crandall; P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321-340 (1971) · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[13] M. G. Rabinowitz; P. H. Crandalland, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Ration. Mech. Anal., 52, 161-180 (1973) · Zbl 0275.47044 · doi:10.1007/BF00282325
[14] D. DeAngelis; R. Goldstein; R. O’Neill, A model for trophic interaction, Ecology, 56, 881-892 (1975)
[15] M. Fan; Y. Kuang, Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response, J. Math. Anal. Appl., 295, 15-39 (2004) · Zbl 1051.34033 · doi:10.1016/j.jmaa.2004.02.038
[16] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981. · Zbl 0456.35001
[17] M. A. Herrero; J. J. L. Velázquez, Chemotactic collapse for the Keller-Segel model, J. Math. Biol., 35, 177-194 (1996) · Zbl 0866.92009 · doi:10.1007/s002850050049
[18] T. Hillen; K. J. Painter, A user’s guidence to PDE models for chemotaxis, J. Math. Biol., 58, 183-217 (2009) · Zbl 1161.92003 · doi:10.1007/s00285-008-0201-3
[19] D. Horstmann; M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215, 52-107 (2005) · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[20] T.-W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 281, 395-401 (2003) · Zbl 1033.34052 · doi:10.1016/S0022-247X(02)00395-5
[21] D. Iron; M. J. Ward; J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D, 150, 25-62 (2001) · Zbl 0983.35020 · doi:10.1016/S0167-2789(00)00206-2
[22] H. Jin and Z. Wang, Global stability and spatio-temporal patterns of predator-prey systems with density-dependent motion, European J. Appl. Math.. · Zbl 1505.35040
[23] Y. Kan-on; E. Yanagida, Existence of nonconstant stable equilibria in competition-diffusion equations, Hiroshima Math. J., 23, 193-221 (1993) · Zbl 0823.35090 · doi:10.32917/hmj/1206128382
[24] T. Kato, Study of partial differential equations by means of functional analysis, Springer Classics in Mathematics, (1996).
[25] J. P. Keener, Activators and inhibitors in pattern formation, Stud. Appl. Math., 59, 1-23 (1978) · Zbl 0407.92023 · doi:10.1002/sapm19785911
[26] W. Ko; K. Ryu, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge, J. Differential Equations, 231, 534-550 (2006) · Zbl 1387.35588 · doi:10.1016/j.jde.2006.08.001
[27] T. Kolokolnikov; M. J. Ward; J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: The pulse-splitting regime, Phys. D, 202, 258-293 (2005) · Zbl 1136.35003 · doi:10.1016/j.physd.2005.02.009
[28] T. Kolokolnikov; M. J. Ward; J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: The low feed-rate regime, Stud. Appl. Math., 115, 21-71 (2005) · Zbl 1145.65328 · doi:10.1111/j.1467-9590.2005.01554
[29] T. Kolokolnikov; J. Wei, Stability of spiky solutions in a competition model with cross-diffusion, SIAM J. Appl. Math., 71, 1428-1457 (2011) · Zbl 1259.35018 · doi:10.1137/100808381
[30] Y. Lou; W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131, 79-131 (1996) · Zbl 0867.35032 · doi:10.1006/jdeq.1996.0157
[31] Y. Lou; W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach, J. Differential Equations, 154, 157-190 (1999) · Zbl 0934.35040 · doi:10.1006/jdeq.1998.3559
[32] M. Ma; C. Ou; Z. Wang, Stationary solutions of a volume filling chemotaxis model with logistic growth, SIAM J. Appl. Math., 72, 740-766 (2012) · Zbl 1259.35031 · doi:10.1137/110843964
[33] H. Matano; M. Mimura, Pattern formation in competition-diffusion systems in nonconvex domains, Publ. Res. Inst. Math. Sci., 19, 1049-1079 (1983) · Zbl 0548.35063 · doi:10.2977/prims/1195182020
[34] M. Mimura, Stationary patterns of some density-dependent diffusion system with competitive dynamics, Hiroshima Math. J., 11, 621-635 (1981) · Zbl 0483.35045 · doi:10.32917/hmj/1206133994
[35] M. Mimura; S.-I. Ei; Q. Fang, Effect of domain-shape on coexistence problems in a competition-diffusion system, J. Math. Biol., 29, 219-237 (1991) · Zbl 0737.92024 · doi:10.1007/BF00160536
[36] M. Mimura; K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9, 49-64 (1980) · Zbl 0425.92010 · doi:10.1007/BF00276035
[37] V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol., 42, 63-105 (1973) · doi:10.1016/0022-5193(73)90149-5
[38] W.-M. Ni; Y. Wu; Q. Xu, The existence and stability of nontrivial steady states for SKT competition model with cross-diffusion, Discret Contin. Dyn. Syst., 34, 5271-5298 (2014) · Zbl 1326.35019 · doi:10.3934/dcds.2014.34.5271
[39] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7, 487-513 (1971) · Zbl 0212.16504 · doi:10.1016/0022-1236(71)90030-9
[40] J. Shi; X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246, 2788-2812 (2009) · Zbl 1165.35358 · doi:10.1016/j.jde.2008.09.009
[41] N. Shigesada; K. Kawasaki; E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79, 83-99 (1979) · doi:10.1016/0022-5193(79)90258-3
[42] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr, 41. American Mathematical Society, Providence, RI, 1995.
[43] I. Takagi; W.-M. Ni, Point condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Indust. Appl. Math., 12, 327-365 (1995) · Zbl 0843.35006 · doi:10.1007/BF03167294
[44] I. Takagi, Point-condensation for a reaction-diffusion system, J. Differential Equations, 61, 208-249 (1986) · Zbl 0627.35049 · doi:10.1016/0022-0396(86)90119-1
[45] Y. Takeuchi, Global stability in generalized Lotka-Volterra diffusion systems, J. Math. Anal. Appl., 116, 209-221 (1986) · Zbl 0595.92013 · doi:10.1016/0022-247X(86)90053-3
[46] B. de Villemereuil; A. Lopez-Sepulcre, Consumer functional responses under intra- and interspecific interference competition, Ecol. Model., 222, 419-426 (2011) · doi:10.1016/j.ecolmodel.2010.10.011
[47] K. Wang; Q. Wang; F. Yu, Stationary and time periodic patterns of two-predator and one-prey systems with prey-taxis, Discrete Contin. Dyn. Syst., 37, 505-543 (2017) · Zbl 1357.35044 · doi:10.3934/dcds.2017021
[48] Q. Wang; C. Gai; J. Yan, Qualitative analysis of a Lotka-Volterra competition system with advection, Discrete Contin. Dyn. Syst., 35, 1239-1284 (2015) · Zbl 1327.92050 · doi:10.3934/dcds.2015.35.1239
[49] Q. Wang; Y. Song; L. Shao, Nonconstant positive steady states and pattern formation of 1D prey-taxis systems, J. Nonlinear Sci., 27, 71-97 (2017) · Zbl 1368.92160 · doi:10.1007/s00332-016-9326-5
[50] Q. Wang, J. Yang and F. Yu, Global well-posedness of advective Lotka-Volterra competition systems with nonlinear diffusion, Proc. Roy. Soc. Edinburgh Sect. A, (2019). · Zbl 1465.35276
[51] Q. Wang; L. Zhang, On the multi-dimensional advective Lotka-Volterra competition systems, Nonlinear Anal. Real World Appl., 37, 329-349 (2017) · Zbl 1394.92113 · doi:10.1016/j.nonrwa.2017.02.011
[52] X. Wang; Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly’s compactness theorem, J. Math. Biol., 66, 1241-1266 (2013) · Zbl 1301.92006 · doi:10.1007/s00285-012-0533-x
[53] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248, 2889-2905 (2010) · Zbl 1190.92004 · doi:10.1016/j.jde.2010.02.008
[54] M. Winter; J. Wei, Stability of monotone solutions for the shadow Gierer-Meinhardt system with finite diffusivity, Differential Integral Equations, 16, 1153-1180 (2003) · Zbl 1074.35017
[55] F. Yi; J. Wei; J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246, 1944-1977 (2009) · Zbl 1203.35030 · doi:10.1016/j.jde.2008.10.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.