×

Weighted Bergman kernel, directional Lelong number and John-Nirenberg exponent. (English) Zbl 1436.32013

Summary: Let \(\psi\) be a plurisubharmonic function on the closed unit ball and \(K_{t\psi}(z)\) the Bergman kernel on the unit ball with respect to the weight \(t\psi\). We show that the boundary behavior of \(K_{t\psi}(z)\) is determined by certain directional Lelong number of \(\psi\) for all \(t\) smaller than the John-Nirenberg exponent of \(\psi\) associated to certain family of nonisotropic balls, which is always positive.

MSC:

32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32U25 Lelong numbers

References:

[1] Benelkourchi, S.; Jennane, B.; Zeriahi, A., Polya’s inequalities, global uniform integrability and the size of plurisubharmonic lemniscates, Ark. Mat., 43, 85-112 (2005) · Zbl 1092.31005 · doi:10.1007/BF02383612
[2] Berndtsson, B., The extension theorem of Oshawa-Takegoshi and the theorem of Donnelly-Fefferman, Ann. Inst. Fourier, 46, 1083-1094 (1996) · Zbl 0853.32024 · doi:10.5802/aif.1541
[3] Blocki, Z., A note on the Hörmander, Donnelly-Fefferman, and Berndtsson \(L^2\)-estimate for the \({\bar{\partial }}-\) operator, Ann. Pol. Math., 84, 87-91 (2004) · Zbl 1108.32019 · doi:10.4064/ap84-1-9
[4] Brudnyi, A., Local inequalities for plurisubharmonic functions, Ann. Math., 149, 511-533 (1999) · Zbl 0927.31001 · doi:10.2307/120973
[5] Calderón, AP, Inequalities for the maximal function relative to a metric, Stud. Math., 57, 297-306 (1976) · Zbl 0341.44007 · doi:10.4064/sm-57-3-297-306
[6] Chen, B-Y, Completeness of the Bergman metric on non-smooth pseudoconvex domains, Ann. Pol. Math., 71, 241-251 (1999) · Zbl 0937.32014 · doi:10.4064/ap-71-3-241-251
[7] Demailly, J-P, Regularization of closed positive currents and intersection theory, J. Algebr. Geom., 1, 361-409 (1992) · Zbl 0777.32016
[8] Demailly, J-P, Complex Analytic and Differential Geometry (1997), Grenoble: University of Grenoble I, Grenoble
[9] Fefferman, C.; Stein, EM, \(H^p\) spaces of several variables, Acta Math., 129, 137-193 (1972) · Zbl 0257.46078 · doi:10.1007/BF02392215
[10] Hörmander, L., An Introduction to Complex Analysis in Several Variables (1990), North Holland: Elsevier, North Holland · Zbl 0685.32001
[11] Hörmander, L., Notions of Convexity, Progress in Mathematics (1994), Basel: Birkhäuser, Basel · Zbl 0835.32001
[12] John, F.; Nirenberg, L., On functions of bounded mean oscillation, Commun. Pure Appl. Math., 14, 415-426 (1961) · Zbl 0102.04302 · doi:10.1002/cpa.3160140317
[13] Stein, EM, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (1993), Princeton: Princeton University Press, Princeton · Zbl 0821.42001
[14] Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, GTM (2005), New York: Springer, New York · Zbl 1067.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.