×

The 3-point spectral Pick interpolation problem and an application to holomorphic correspondences. (English) Zbl 1436.30032

Summary: We provide a necessary condition for the existence of a 3-point holomorphic interpolant \(F:\mathbb{D}\longrightarrow \Omega_n\), \(n\ge 2\). Our condition is inequivalent to the necessary conditions hitherto known for this problem. The condition generically involves a single inequality and is reminiscent of the Schwarz lemma. We combine some of the ideas and techniques used in our result on the \(\mathcal{O}(\mathbb{D},\,\Omega_n)\)-interpolation problem to establish a Schwarz lemma – which may be of independent interest – for holomorphic correspondences from \(\mathbb{D}\) to a general planar domain \(\Omega \Subset\mathbb{C} \).

MSC:

30E05 Moment problems and interpolation problems in the complex plane

References:

[1] Agler, J.; Young, Nj, A commutant lifting theorem for a domain in \({\mathbb{C}}^2\) and spectral interpolation, J. Funct. Anal., 161, 2, 452-477 (1999) · Zbl 0943.47005 · doi:10.1006/jfan.1998.3362
[2] Agler, J.; Young, Nj, The two-point spectral Nevanlinna-Pick problem, Integral Equ. Oper. Theory, 37, 4, 375-385 (2000) · Zbl 1054.47504 · doi:10.1007/BF01192826
[3] Baribeau, L.; Kamara, As, A refined Schwarz lemma for the spectral Nevanlinna-Pick problem, Complex Anal. Oper. Theory, 8, 2, 529-536 (2014) · Zbl 1303.47017 · doi:10.1007/s11785-013-0306-6
[4] Bercovici, H.; Foias, C.; Tannenbaum, A., A spectral commutant lifting theorem, Trans. Am. Math. Soc., 325, 2, 741-763 (1991) · Zbl 0738.47006 · doi:10.1090/S0002-9947-1991-1000144-9
[5] Bharali, G., Some new observations on interpolation in the spectral unit ball, Integral Equ. Oper Theory, 3, 329-343 (2007) · Zbl 1144.47013 · doi:10.1007/s00020-007-1534-9
[6] Chirka, Em, Complex Analytic Sets (1989), Norwell: Kluwer Academic Publishers Group, Norwell · Zbl 0683.32002
[7] Costara, C., The \(2 \times 2\) spectral Nevanlinna-Pick problem, J. Lond. Math. Soc., 71, 3, 684-702 (2005) · Zbl 1080.32013 · doi:10.1112/S002461070500640X
[8] Costara, C., On the spectral Nevanlinna-Pick problem, Stud. Math., 170, 1, 23-55 (2005) · Zbl 1074.30035 · doi:10.4064/sm170-1-2
[9] Dunford, N.; Schwartz, Jt, Linear Operators Part I: General Theory (1988), Hoboken: Wiley-Interscience, Hoboken
[10] Horn, Ra; Johnson, Cr; Analysis, M., Review of Matrix Analysis (2013), Cambridge: Cambridge University Press, Cambridge · Zbl 1267.15001
[11] Munkres, Jr, Topology: A First Course (1975), Englewood Cliffs: Prentice-Hall, Englewood Cliffs · Zbl 0306.54001
[12] Nokrane, Abdelkrim; Ransford, Thomas, Schwarz’s lemma for algebroid multifunctions, Complex Var. Theory Appl., 45, 2, 183-196 (2001) · Zbl 1023.30027
[13] Ogle, D.J.: Operator and Function Theory of the Symmetrized Polydisc, Ph.D. thesis (1999), https://theses.ncl.ac.uk/dspace/bitstream/10443/1264/1/Ogle99.pdf
[14] Ransford, Tj; White, Mc, Holomorphic self-maps of the spectral unit ball, Bull. Lond. Math. Soc., 23, 3, 256-262 (1991) · Zbl 0749.32018 · doi:10.1112/blms/23.3.256
[15] Stephen, D., Fisher, on Schwarz’s lemma and inner functions, Trans. Am. Math. Soc., 138, 229-240 (1969) · Zbl 0175.36402
[16] Vesentini, E., On the subharmonicity of the spectral radius, Boll. Mat. Ital., 4, 1, 427-429 (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.