×

Langevin equation involving three fractional orders. (English) Zbl 1436.26006

Existence and uniqueness of initial value problems for the nonlinear Langevin equation involving three fractional orders are the main objects of study of this note. A new norm is employed to this end and the desired results follow by using the Banach contraction mapping principle. The given internal noise depends on the fractional derivatives, described in the Caputo sense. The obtained results are valid, due to avoiding some usual restrictive hypotheses, for classes of functions wider than \(C[0, 1]\).

MSC:

26A33 Fractional derivatives and integrals
34A08 Fractional ordinary differential equations
47E05 General theory of ordinary differential operators
Full Text: DOI

References:

[1] Langevin, P., On the theory of Brownian motion, Comptes Rendus, 146, 530-533 (1908) · JFM 39.0847.03
[2] Mazo, Rm, Brownian Motion: Fluctuations, Dynamics, and Applications (2002), Oxford: Oxford University Press on Demand, Oxford · Zbl 1140.60001
[3] Wax, N., Selected Papers on Noise and Stochastic Processes (1954), New York: Dover, New York · Zbl 0059.11903
[4] Zwanzig, R., Nonequilibrium Statistical Mechanics (2001), Oxford: Oxford University Press, Oxford · Zbl 1267.82001
[5] Bouchaud, Jp; Cont, R., A Langevin approach to stock market fluctuations and crashes, Eur. Phys. J. B, 6, 4, 543-550 (1998) · doi:10.1007/s100510050582
[6] Wodkiewicz, K.; Zubairy, Ms, Exact solution of a nonlinear Langevin equation with applications to photo electron counting and noise-induced instability, J. Math. Phys., 24, 6, 1401-1404 (1983) · Zbl 0513.60057 · doi:10.1063/1.525874
[7] Kosinski, Ra; Grabowski, A., Langevin equations for modeling evacuation processes, Acta Phys. Pol. Ser. B, 3, 2, 365-376 (2010)
[8] Fraaije, Jgem; Zvelindovsky, Av; Sevink, Gja; Maurits, Nm, Modulated self-organization in complex amphiphilic systems, Mol. Simul., 25, 3-4, 131-144 (2000) · doi:10.1080/08927020008044119
[9] Hinch, Ej, Application of the Langevin equation to fluid suspensions, J. Fluid Mech., 72, 3, 499-511 (1975) · Zbl 0327.76044 · doi:10.1017/S0022112075003102
[10] Takahashi, A., Low-Energy Nuclear Reactions and New Energy Technologies Sourcebook (2009), Oxford: Oxford University Press, Oxford
[11] Schluttig, J.; Alamanova, D.; Helms, V.; Schwarz, Us, Dynamics of protein-protein encounter: a Langevin equation approach with reaction patches, J. Chem. Phys., 129, 15, 10B616 (2008) · doi:10.1063/1.2996082
[12] Klages, R.; Radons, G.; Sokolov, Im, Anomalous Transport: Foundations and Applications (2008), Weinheim: Wiley, Weinheim
[13] Kubo, R., The fluctuation-dissipation theorem, Rep. Prog. Phys., 29, 1, 255 (1966) · Zbl 0163.23102 · doi:10.1088/0034-4885/29/1/306
[14] Coffey, Wt; Kalmykov, Yp, The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering (2004), Singapore: World Scientific, Singapore · Zbl 1098.82001
[15] Sandev, T.; Tomovski, Z., Langevin equation for a free particle driven by power law type of noises, Phys. Lett. A, 378, 1-2, 1-9 (2014) · Zbl 1396.82015 · doi:10.1016/j.physleta.2013.10.038
[16] Mainardi, F.; Pironi, P.; Tampieri, F.; Tabarrok, B.; Dost, S., On a generalization of the Basset problem via fractional calculus, Proc. CANCAM, 95, 2, 836-837 (1995)
[17] Mainardi, F.; Pironi, P., The fractional langevin equation: Brownian motion revisited, Extr. Math., 10, 140-154 (1996)
[18] West, Bj; Latka, M., Fractional Langevin model of gait variability, J. Neuroeng. Rehabil., 2, 1, 24 (2005) · doi:10.1186/1743-0003-2-24
[19] Picozzi, S.; West, Bj, Fractional Langevin model of memory in financial markets, Phys. Rev. E, 66, 4, 046118 (2002) · doi:10.1103/PhysRevE.66.046118
[20] Eab, Ch; Lim, Sc, Fractional generalized Langevin equation approach to single-file diffusion, Phys. A, 389, 13, 2510-2521 (2010) · doi:10.1016/j.physa.2010.02.041
[21] Lutz, E.; Klafter, J.; Lim, Sc; Metzler, R., Fractional langevin equation, Fractional Dynamics: Recent Advances, 285-305 (2012), Singapore: World Scientific, Singapore · Zbl 1308.82050
[22] Lim, Sc; Li, M.; Teo, Lp, Langevin equation with two fractional orders, Phys. Lett. A, 372, 42, 6309-6320 (2008) · Zbl 1225.82049 · doi:10.1016/j.physleta.2008.08.045
[23] Baghani, O., On fractional Langevin equation involving two fractional orders, Commun. Nonlinear Sci. Numer. Simul., 42, 675-681 (2017) · Zbl 1473.82025 · doi:10.1016/j.cnsns.2016.05.023
[24] Ahmad, B.; Nieto, Jj, Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions, Int. J. Differ. Equ., 2010, 3723-3736 (2010) · Zbl 1207.34007
[25] Yu, T.; Deng, K.; Luo, M., Existence and uniqueness of solutions of initial value problems for nonlinear Langevin equation involving two fractional orders, Commun. Nonlinear Sci. Numer. Simul., 19, 6, 1661-1668 (2014) · Zbl 1457.34020 · doi:10.1016/j.cnsns.2013.09.035
[26] Fazli, H.; Nieto, Jj, Fractional Langevin equation with anti-periodic boundary conditions, Chaos Solitons Fractals, 114, 332-337 (2018) · Zbl 1415.34016 · doi:10.1016/j.chaos.2018.07.009
[27] Zhai, C.; Li, P., Nonnegative solutions of initial value problems for Langevin equations involving two fractional orders, Mediterr. J. Math., 15, 4, 164 (2018) · Zbl 1403.34009 · doi:10.1007/s00009-018-1213-x
[28] Gao, Z.; Yu, X.; Wang, J., Nonlocal problems for Langevin-type differential equations with two fractional-order derivatives, Bound. Value Probl., 2016, 1, 52 (2016) · Zbl 1332.34007 · doi:10.1186/s13661-016-0560-4
[29] Li, B.; Sun, S.; Sun, Y., Existence of solutions for fractional Langevin equation with infinite-point boundary conditions, J. Appl. Math. Comput., 53, 1-2, 683-692 (2017) · Zbl 1360.34015 · doi:10.1007/s12190-016-0988-9
[30] Wang, J.; Li, X., A uniform method to Ulam-Hyers stability for some linear fractional equations, Mediterr. J. Math., 13, 2, 625-635 (2016) · Zbl 1337.26020 · doi:10.1007/s00009-015-0523-5
[31] Wang, J.; Peng, S.; O’Regan, D., Local stable manifold of Langevin differential equations with two fractional derivatives, Adv. Differ. Equ., 2017, 1, 335 (2017) · Zbl 1444.34018 · doi:10.1186/s13662-017-1389-6
[32] Zhao, K., Impulsive boundary value problems for two classes of fractional differential equation with two different Caputo fractional derivatives, Mediterr. J. Math., 13, 3, 1033-1050 (2016) · Zbl 1352.34013 · doi:10.1007/s00009-015-0536-0
[33] Ahmad, B.; Nieto, Jj; Alsaedi, A.; El-Shahed, M., A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal., 13, 2, 599-606 (2012) · Zbl 1238.34008 · doi:10.1016/j.nonrwa.2011.07.052
[34] Jeon, Jh; Metzler, R., Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries, Phys. Rev. E, 81, 2, 021103 (2010) · doi:10.1103/PhysRevE.81.021103
[35] Kobelev, V.; Romanov, E., Fractional Langevin equation to describe anomalous diffusion, Prog. Theor. Phys. Suppl., 139, 470-476 (2000) · doi:10.1143/PTPS.139.470
[36] Sandev, T.; Metzler, R.; Tomovski, Z., Correlation functions for the fractional generalized Langevin equation in the presence of internal and external noise, J. Math. Phys., 55, 2, 023301 (2014) · Zbl 1291.82097 · doi:10.1063/1.4863478
[37] Sandev, T.; Metzler, R.; Tomovski, Z., Velocity and displacement correlation functions for fractional generalized Langevin equations, Fract. Calc. Appl. Anal., 15, 3, 426-450 (2012) · Zbl 1274.82045 · doi:10.2478/s13540-012-0031-2
[38] Metzler, R.; Klafter, J., Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional diffusion, Phys. Rev. E, 61, 6, 6308 (2000) · doi:10.1103/PhysRevE.61.6308
[39] West, Bj, Fractal physiology and the fractional calculus: a perspective, Front. Physiol., 1, 12 (2010)
[40] Folland, Gb, Real Analysis: Modern Techniques and Their Applications (2013), New York: Wiley, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.