×

On the supersoluble hypercentre of a finite group. (English) Zbl 1436.20027

Let \(G\) be a finite group and \(H\leq G\). \(H\) is said to be \(S\)-permutable in \(G\) if \(H\) permutes with all Sylow subgroups of \(G\), and is said to be \(S\)-semipermutable in \(G\) if \(H\) permutes with all Sylow \(q\)-subgroups of \(G\) for the primes \(q\) not dividing \(|H|\). In this article, the authors give some sufficient conditions for a normal \(p\)-subgroup \(P\) of a finite group \(G\) to have every \(G\)-chief factor below it cyclic. They also prove the following theorem.
Theorem. Let \(P\in\mathrm{Syl}_{p}(G)\) and let \(d\) be a power of \(p\) such that \(1\leq d<|P|\). Assume that \(H\cap O^{p}(G)\) is \(S\)-semipermutable in \(G\) for all noncyclic subgroups \(H\) of \(P\) with \(|H|=d\). Then either \(|P\cap O^{p}(G)|>d\), or \(P\cap O^{p}(G)\) is cyclic, or else \(G\) is \(p\)-supersoluble.

MSC:

20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
20D40 Products of subgroups of abstract finite groups

References:

[1] Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of finite groups. In: de Gruyter Expositions in Mathematics, vol. 53. Walter de Gruyter, Berlin (2010). doi:10.1515/9783110220612 · Zbl 1206.20019
[2] Ballester-Bolinches, A., Esteban-Romero, R., Qiao, S.H.: A note on a result of Guo and Isaacs about \[p\] p-supersolubility of finite groups. Arch. Math. (Basel) 106, 501-506 (2016). doi:10.1007/s00013-016-0901-7 · Zbl 1342.20020 · doi:10.1007/s00013-016-0901-7
[3] Berkovich, Y., Isaacs, I.M.: \[p\] p-Groups stabilizing certain subgroups. J. Algebra 414, 82-94 (2014). doi:10.1016/j.jalgebra.2014.04.026 · Zbl 1316.20012
[4] Chen, X., Guo, W., Skiba, A.N.: Some conditions under which a finite group belongs to a Baer-local formation. Commun. Algebra 42(10), 4188-4203 (2014). doi:10.1080/00927872.2013.806519 · Zbl 1316.20013 · doi:10.1080/00927872.2013.806519
[5] Doerk, K., Hawkes, T.: Finite soluble groups. In: De Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter, Berlin (1992). doi:10.1515/9783110870138 · Zbl 0753.20001
[6] Gorenstein, D.: Finite Groups. Chelsea, New York (1980) · Zbl 0463.20012
[7] Guo, Y., Isaacs, I.M.: Conditions on \[p\] p-supersolvability. Arch. Math. (Basel) 105, 215-222 (2015). doi:10.1007/s00013-015-0803-0 · Zbl 1344.20032
[8] Huppert, B.: Endliche Gruppen I. In: Grund. Math. Wiss., vol. 134. Springer, Berlin (1967) · Zbl 0217.07201
[9] Isaacs, I.M.: Semipermutable \[\pi\] π-subgroups. Arch. Math. (Basel) 102, 1-6 (2014). doi:10.1007/s00013-013-0604-2 · Zbl 1297.20018 · doi:10.1007/s00013-013-0604-2
[10] Li, Y., Qiao, S., Su, N., Wang, Y.: On weakly \[s\] s-semipermutable subgroups of finite groups. J. Algebra 371, 250-261 (2012). doi:10.1016/j.jalgebra.2012.06.025 · Zbl 1269.20020
[11] Su, N., Li, Y., Wang, Y.: The weakly \[s\] s-supplemented property of finite groups. Chin. J. Contemp. Math. 35(4), 1-12 (2014). doi:10.16205/j.cnki.cama.2015.0010 · Zbl 1316.20013
[12] Wang, L., Wang, Y.: On \[s\] s-subgroups of finite groups. Commun. Algebra 34, 143-149 (2006). doi:10.1080/00927870500346081 · Zbl 1087.20015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.