×

\(p\)-adic \(L\)-functions of Bianchi modular forms. (English) Zbl 1436.11142

Summary: The theory of overconvergent modular symbols, developed by Rob Pollack and Glenn Stevens, gives a beautiful and effective construction of the \(p\)-adic \(L\)-function of a modular form. In this paper, we give an analogue of their results for Bianchi modular forms, that is, modular forms over imaginary quadratic fields. In particular, we prove control theorems that say that the canonical specialisation map from overconvergent to classical Bianchi modular symbols is an isomorphism on small slope eigenspaces of suitable Hecke operators. We also give an explicit link between the classical modular symbol attached to a Bianchi modular form and critical values of its \(L\)-function, which then allows us to construct \(p\)-adic \(L\)-functions of Bianchi modular forms.

MSC:

11S40 Zeta functions and \(L\)-functions
11F12 Automorphic forms, one variable
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols

References:

[1] A.Ash and G.Stevens, ‘Modular forms in characteristic \(\ell\) and special values of their \(L\)‐functions’, Duke Math. J.53 (1986) 849-868. · Zbl 0618.10026
[2] J.Bygott, ‘Modular forms and modular symbols over imaginary quadratic fields’, PhD Thesis, University of Exeter, 1998.
[3] P.Colmez, ‘Fonctions d’une variable \(p\)‐adique’, Asterisque330 (2010) 13-59. · Zbl 1223.11144
[4] J.Cremona, ‘Modular symbols’, PhD Thesis, University of Oxford, 1981.
[5] J.Cremona and E.Whitley, ‘Periods of cusp forms and elliptic curves over imaginary quadratic fields’, Math. Comp.62 (1994) 407-429. · Zbl 0798.11015
[6] P.Deligne, ‘Les constantes des equations fonctionelles des functions \(L\)’, Modular functions of one variable, II (Proceeding of the International Summer School, University of Antwerp), Lecture Notes in Mathematics 349 (Springer, Berlin, 1972).
[7] E.Ghate, ‘Critical values of the twisted tensor \(L\)‐function in the imaginary quadratic case’, Duke Math. J.96 (1999) 595-638. · Zbl 0983.11024
[8] M.Greenberg, ‘Lifting modular symbols of non‐critical slope’, Israel J. Math.161 (2007) 141-155. · Zbl 1165.11049
[9] S.Haran, ‘\(p\)‐adic \(L\)‐functions for modular forms’, Comp. Math.62 (1987) 31-46. · Zbl 0618.10027
[10] G.Harder, ‘Eisenstein cohomology of arithmetic groups: the case GL \({}_2\)’, Invent. Math.89 (1987) 37-118. · Zbl 0629.10023
[11] E.Hecke, ‘Eine neue Art von zetafunctionen und ihre beziehungen zur verteilung der primzahlen II’, Math. Z.6 (1920) 11-51. · JFM 47.0152.01
[12] E.Hecke, Volezungen über die theorie der algebraischen zahlen (Akademische Verlag, 1923). · JFM 49.0106.10
[13] H.Hida, ‘\(P\)‐ordinary cohomology groups for SL \({}_2\) over number fields’, Duke Math. J.69 (1993) 259-314. · Zbl 0941.11024
[14] H.Hida, ‘On the critical values of \(L\)‐functions of GL(2) and GL \((2) \times\) GL(2)’, Duke Math. J.74 (1994) 432-528. · Zbl 0838.11036
[15] D.Loeffler, ‘\(P\)‐adic integration on ray class groups and non‐ordinary \(p\)‐adic \(L\)‐functions’, Iwasawa 2012 (2014). · Zbl 1384.11100
[16] W.Narkiewicz, Elementary and analytic theory of algebraic numbers, 3rd edn (Springer, Berlin, 2014).
[17] J.Nemchenok, ‘Imprimitive Gaussian sums and theta functions over number fields’, Trans. Amer. Math. Soc.338 (1993) 465-478. · Zbl 0791.11039
[18] R.Pollack, ‘Overconvergent modular symbols’, Contrib. Math. Comput. Sci.6 (2011) 69-105. · Zbl 1359.11057
[19] R.Pollack and G.Stevens, ‘Overconvergent modular symbols and \(p\)‐adic \(L\)‐functions’, Ann. Sci. Éc. Norm. Supér.44 (2011) 1-42. · Zbl 1268.11075
[20] R.Pollack and G.Stevens, ‘Critical slope \(p\)‐adic \(L\)‐functions’, J. Lond. Math. Soc. (3) 87 (2013) 428-452. · Zbl 1317.11051
[21] D. BarreraSalazar, ‘Cohomologie surconvergente des variétés modularies de Hilbert et fonctions \(Lp\)‐adiques’, PhD Thesis, Université Lille, 2013.
[22] D. BarreraSalazar and C.Williams, ‘\(P\)‐adic \(L\)‐functions for \(\operatorname{ GL }_2\)’, Preprint, 2014, http://arxiv.org/abs/1602.06244.
[23] R. G.Swan, ‘Generators and relations for certain special linear groups’, Adv. Math.6 (1971) 1-71. · Zbl 0221.20060
[24] J.Tate, ‘Number theoretic background’, Automorphic forms, representations and L‐functions part 2, Proceedings of Symposia in Pure Mathematics 33 (American Mathematical Society, Providence, RI, 1979). · Zbl 0422.12007
[25] M.Trifković, ‘Stark-Heegner points on elliptic curves on elliptic curves defined over imaginary quadratic fields’, Duke Math. J.135 (2006) 415-453. · Zbl 1111.14025
[26] A.Weil ‘Dirichlet series and automorphic forms’, Lecture Notes in Mathematics 189 (Springer, Berlin, 1971). · Zbl 0218.10046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.