×

Periods of mixed Tate motives over real quadratic number rings. (English) Zbl 1436.11108

Kielanowski, Piotr (ed.) et al., Geometric methods in physics XXXV. Workshop and summer school, Białowieża, Poland, June 26 – July 2, 2016. Cham: Birkhäuser. Trends Math., 189-198 (2018).
The author defined multiple Dedekind zeta values in [J. Reine Angew. Math. 722, 65–104 (2017; Zbl 1391.11152)]. For a quadratic number field \(K\), multiple Dedekind zeta values are
\[ \zeta_{K;C}(s_1,s_2,\dots,s_m)=\sum_{\alpha_1,\dots,\alpha_m\in C}\frac{1}{N(\alpha_1)^{s_1}N(\alpha_1+\alpha_2)^{s_2}\dots N(\alpha_1+\dots+\alpha_m)^{s_m}}, \]
where \(s_1,\ldots, s_m\) are positive integers and \(s_m\ge 2\) and \(C\) is a cone generated by a totally positive unit \(\beta\) in \(K\) and \(1\), defined by
\[ C=\mathbb{N}\{1,\beta\}=\{\gamma\in K|\gamma=a+b\beta, \text{ for } a,b\geq 0\}. \]
In this paper, the author mainly proves that:
Theorem. Let \(K\) be a real quadratic field, and let \(C\) be a cone generated by a totally positive unit \(\beta\) in \(K\) and \(1\). Then the multiple Dedekind zeta value
\[ (\beta_2-\beta_1)^3\zeta_{K;C}(1,2) \]
is a period of mixed Tate motive over the ring of integers in \(K\).
The main idea is that by a special integral representation, \((\beta_2-\beta_1)^3\zeta_{K;C}(1,2)\) is interpreted as a period of
\[ H^6(\overline{\mathcal{M}}_{0,15}-A;B-A\cap B) \]
for some subvarities \(A\) and \(B\). Thus from A. B. Goncharov and Yu. I. Manin’s result [Compos. Math. 140, No. 1, 1–14 (2004; Zbl 1047.11063)], \((\beta_2-\beta_1)^3\zeta_{K;C}(1,2)\) is a mixed Tate motive over \(\mathcal{O}_K\).
For the entire collection see [Zbl 1388.00033].

MSC:

11M32 Multiple Dirichlet series and zeta functions and multizeta values
11R42 Zeta functions and \(L\)-functions of number fields
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14G25 Global ground fields in algebraic geometry

References:

[1] Brown, F.: Mixed Tate motives overZ. Ann. of Math. (2) 175 (2012), no. 2, 949–976. · Zbl 1278.19008
[2] Brown, F.: Dedekind zeta motives for totally real number fields. Invent. Math. 194 (2013), no. 2, 257–311. · Zbl 1286.14006
[3] Deligne, P. and Goncharov, A: Groupes fondamentaux motiviques de Tate mixte. (French) [Mixed Tate motivic fundamental groups], Ann. Sci. ´Ecole Norm. Sup. (4) 38 (2005), no. 1, 1–56. · Zbl 1084.14024
[4] Goncharov, A. and Manin, Yu.: Multiple ζ-motives and moduli spaces M0,n. Compos. Math. 140 (2004), no. 1, 1–14. · Zbl 1047.11063
[5] Horozov, I.: Multiple Dedekind Zeta Functions, J. Reine Angew. Math. 722 (2017), 65–104. (Crelle’s Journal), DOI: 10.1515/crelle-2014-0055 · Zbl 1391.11152
[6] Horozov, I.: Non-commutative Hilbert modular symbols, Algebra and Number Theory Vol. 9 (2015), No. 2, 317–370 DOI: 10.2140/ant.2015.9.317 · Zbl 1376.11031
[7] Kontsevich, M. and Zagier, D.: Periods, Mathematics unlimited – 2001 and beyond, 771–808, Springer, Berlin, 2001. · Zbl 1039.11002
[8] Zagier, D.: A Kronecker limit formula for real quadratic fields. Math. Ann. 213 (1975), 153–184. · Zbl 0283.12004
[9] Zagier, D.: On the values at negative integers of the zeta-function of a real quadratic field, L’Enseignement Math´ematique, 22 (1976) 55–95. Ivan Horozov City University of New York Bronx Community College Dept. of Mathematics and Computer Science, CP 315, 2155 University Avenue Bronx, New York 10453, USA e-mail:ivan.horozov@bcc.cuny.edu · Zbl 0334.12021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.