×

Performance of finite precision on discrete chaotic map based on a feedback shift register. (English) Zbl 1435.94115

Summary: The scintillating technological improvements have changed the process of communication in all parts of the world. Shopping, banking, instant communication, and so on can be operated online and do not care about the linkage of those Internet communications. Because of simple chaotic structure, discrete nature, less arithmetic computation, and high complexity, low-dimensional chaotic systems such as a logistic map and tent map are more attractive than a high-dimensional chaotic system. To overcome the disadvantages of a low-dimensional chaotic map with a finite precision in chaos-based application, the chaotic map with a feedback shift register (CMFSR) is proposed. The related properties and performance associated with CMFSR are analysed. The relationship among the precision of the system, the architecture, and the performance are discussed. The experiments about new pseudorandom number generator (PRNG) based on CMFSR show that our scheme is simple, secure, and easy to accomplish. Experiments show that the proposed architecture of CMFSR is secure for random number generation.

MSC:

94A55 Shift register sequences and sequences over finite alphabets in information and communication theory
34C28 Complex behavior and chaotic systems of ordinary differential equations
94A60 Cryptography

References:

[1] Zhu, S.; Wang, G.; Zhu, C., A secure and fast image encryption scheme based on double chaotic S-boxes, Entropy, 21, 8, 790 (2019) · doi:10.3390/e21080790
[2] Liu, L.; Chen, W.; Li, T.; Liu, Y., Pseudo-random encryption for security data transmission in wireless sensor networks, Sensors, 19, 11, 2452 (2019) · doi:10.3390/s19112452
[3] Mohammed, A. N. M.; Mohamed, Y. A., An enhancement of data encryption standards algorithm (DES), Proceedings of the 2018 International Conference on Computer · doi:10.1109/ICCCEEE.2018.8515843
[4] Abdullah, D.; Rahim, R.; Siahaan, A. P. U., Super-encryption cryptography with IDEA and WAKE algorithm, Journal of Physics: Conference Series, 1019, 1 (2018) · doi:10.1088/1742-6596/1019/1/012039
[5] Kumar, P.; Rana, S. B., Development of modified AES algorithm for data security, Optik, 127, 4, 2341-2345 (2016) · doi:10.1016/j.ijleo.2015.11.188
[6] Gaži, P.; Tessaro, S., Provably robust sponge-based PRNGs and KDFs, Annual International Conference on the Theory and Applications of Cryptographic Techniques (2016), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1347.94033
[7] Babaei, M.; Farhadi, M., Introduction to secure PRNGs, International Journal of Communications, Network and System Sciences, 4, 10, 616-621 (2011) · doi:10.4236/ijcns.2011.410074
[8] Van Herrewege, A.; Schaller, A.; Katzenbeisser, S.; Verbauwhede, I., Inherent PUFs and secure PRNGs on commercial off-the-shelf microcontrollers, Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security · doi:10.1145/2508859.2512493
[9] Flores‐Vergara, A.; Garcia‐Guerrero, E. E.; Inzunza-González, E., Implementing a chaotic cryptosystem in a 64-bit embedded system by using multiple-precision arithmetic, Nonlinear Dynamics,, 96, 1, 497-516 (2019) · Zbl 1437.94062 · doi:10.1007/s11071-019-04802-3
[10] Fischer, V.; Drutarovský, M., True random number generator embedded in reconfigurable hardware, International Workshop on Cryptographic Hardware and Embedded Systems (2002), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1019.65501
[11] Hua, Z.; Zhou, Y., Exponential chaotic model for generating robust chaos, IEEE Transactions on Systems, Man, and Cybernetics: Systems (2019) · doi:10.1109/tsmc.2019.2932616
[12] Zhou, Y.; Hua, Z.; Pun, C. M.; Chen, C. P., Cascade chaotic system with applications, IEEE Transactions on Cybernetics, 45, 9, 2001-2012 (2015) · doi:10.1109/tcyb.2014.2363168
[13] Hua, Z.; Zhou, Y.; Bao, B. C., Two-dimensional sine chaotification system with hardware implementation, IEEE Transactions on Industrial Informatics (2019) · doi:10.1109/tii.2019.2923553
[14] Hua, Z.; Zhou, B.; Zhou, Y., Sine chaotification model for enhancing chaos and its hardware implementation, IEEE Transactions on Industrial Electronics, 66, 2, 1273-1284 (2019) · doi:10.1109/tie.2018.2833049
[15] Natiq, H.; Banerjee, S.; He, S.; Said, M. R. M.; Kilicman, A., Designing an M-dimensional nonlinear model for producing hyperchaos, Chaos, Solitons & Fractals, 114, 506-515 (2018) · Zbl 1415.37049 · doi:10.1016/j.chaos.2018.08.005
[16] Natiq, H.; Banerjee, S.; Ariffin, M. R. K.; Said, M. R. M., Can hyperchaotic maps with high complexity produce multistability?, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29, 1 (2019) · Zbl 1406.94075 · doi:10.1063/1.5079886
[17] Deng, Y.; Hu, H.; Xiong, W.; Xiong, N. N.; Liu, L., Analysis and design of digital chaotic systems with desirable performance via feedback control, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45, 8, 1187-1200 (2015) · doi:10.1109/tsmc.2015.2398836
[18] Azzaz, M. S.; Tanougast, C.; Sadoudi, S.; Fellah, R.; Dandache, A., A new auto-switched chaotic system and its FPGA implementation, Communications in Nonlinear Science and Numerical Simulation, 18, 7, 1792-1804 (2013) · Zbl 1277.94069 · doi:10.1016/j.cnsns.2012.11.025
[19] Persohn, K. J.; Povinelli, R. J., Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation, Chaos, Solitons & Fractals, 45, 3, 238-245 (2012) · doi:10.1016/j.chaos.2011.12.006
[20] Sayed, W. S.; Radwan, A. G.; Rezk, A. A.; Fahmy, H. A. H., Finite precision logistic map between computational efficiency and accuracy with encryption applications, Complexity, 2017 (2017) · Zbl 1367.34047 · doi:10.1155/2017/8692046
[21] Fan, C.; Ding, Q., Effects of limited computational precision on the discrete chaotic sequences and the design of related solutions, Complexity, 2019 (2019) · doi:10.1155/2019/3510985
[22] Che, S.-L.; Hwang, T.; Lin, W.-W., Randomness enhancement using digitalized modified logistic map, IEEE Transactions on Circuits and Systems II: Express Briefs, 57, 12, 996-1000 (2010) · doi:10.1109/tcsii.2010.2083170
[23] Akhshani, A.; Akhavan, A.; Mobaraki, A.; Lim, S.-C.; Hassan, Z., Pseudo random number generator based on quantum chaotic map, Communications in Nonlinear Science and Numerical Simulation, 19, 1, 101-111 (2014) · Zbl 1344.65009 · doi:10.1016/j.cnsns.2013.06.017
[24] Elmanfaloty, R. A.; Abou-Bakr, E., Random property enhancement of a 1D chaotic PRNG with finite precision implementation, Chaos, Solitons & Fractals, 118, 134-144 (2019) · Zbl 1442.11111 · doi:10.1016/j.chaos.2018.11.019
[25] Phatak, S. C.; Rao, S. S., Logistic map: a possible random-number generator, Physical Review E, 51, 4, 3670-3678 (1995) · doi:10.1103/physreve.51.3670
[26] May, R. M., Simple mathematical models with very complicated dynamics, Nature, 261, 5560, 459-467 (1976) · Zbl 1369.37088 · doi:10.1038/261459a0
[27] Starrett, J., The tent map, the horseshoe and the pendulum: the geometry of chaos control (1997), Denver, CO, USA: Doctoral dissertation, University of Colorado at Denver, Denver, CO, USA
[28] Hua, Z.; Zhou, B.; Zhou, Y., Sine-transform-based chaotic system with FPGA implementation, IEEE Transactions on Industrial Electronics, 65, 3, 2557-2566 (2018) · doi:10.1109/tie.2017.2736515
[29] Khan, M. A.; Jeoti, V., Modified chaotic tent map with improved robust region, Proceedings of the 2013 IEEE 11th Malaysia International Conference on Communications (MICC), IEEE · doi:10.1109/MICC.2013.6805880
[30] Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E., A statistical test suite for random and pseudorandom number generators for cryptographic applications (2010), Gaithersburg, MD, USA: NIST Special Publication, Gaithersburg, MD, USA
[31] Li, C. Y.; Chen, J. S.; Chang, T. Y., A chaos-based pseudo random number generator using timing-based reseeding method, Proceedings of the 2006 IEEE International Symposium on Circuits and Systems · doi:10.1109/ISCAS.2006.1693325
[32] Addabbo, T.; Alioto, M.; Fort, A.; Pasini, A.; Rocchi, S.; Vignoli, V., A class of maximum-period nonlinear congruential generators derived from the Rényi chaotic map, IEEE Transactions on Circuits and Systems I: Regular Papers, 54, 4, 816-828 (2007) · Zbl 1374.94886 · doi:10.1109/tcsi.2007.890622
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.