×

Conformal properties of soft operators. II: Use of null-states. (Conformal properties of soft-operators. II: Use of null-states.) (English) Zbl 1435.83009

Summary: For Part I see [the authors et al., “Conformal properties of soft operators. I: Use of null states”, Phys. Rev. D 101, No. 10, Article ID 106014, 24 p. (2020; doi:10.1103/PhysRevD.101.106014)]. Representations of the (Lorentz) conformal group with the soft operators as highest weight vectors have two universal properties, which we clearly state in this paper. Given a soft operator with a certain dimension and spin, the first property is about the existence of “(large) gauge transformation” that acts on the soft operator. The second property is the decoupling of (large) gauge-invariant null-states of the soft operators from the \(S\)-matrix elements. In each case, the decoupling equation has the form of zero field-strength condition with the soft operator as the (gauge) potential. Null-state decoupling effectively reduces the number of polarisation states of the soft particle and is crucial in deriving soft-theorems from the Ward identities of asymptotic symmetries. To the best of our understanding, these properties are not directly related to the Lorentz invariance of the \(S\)-matrix or the existence of asymptotic symmetries. We also verify that the results obtained from the decoupling of null-states are consistent with the leading and subleading soft-theorems with finite energy massive and massless particles in the external legs.

MSC:

83A05 Special relativity
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
20C35 Applications of group representations to physics and other areas of science
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
22E15 General properties and structure of real Lie groups
81U05 \(2\)-body potential quantum scattering theory
81U20 \(S\)-matrix theory, etc. in quantum theory

Software:

Cadabra

References:

[1] Strominger, A., Asymptotic Symmetries of Yang-Mills Theory, JHEP, 07, 151 (2014) · Zbl 1333.81273 · doi:10.1007/JHEP07(2014)151
[2] Strominger, A., On BMS Invariance of Gravitational Scattering, JHEP, 07, 152 (2014) · Zbl 1392.81215 · doi:10.1007/JHEP07(2014)152
[3] He, T.; Lysov, V.; Mitra, P.; Strominger, A., BMS supertranslations and Weinberg’s soft graviton theorem, JHEP, 05, 151 (2015) · Zbl 1388.83261 · doi:10.1007/JHEP05(2015)151
[4] Strominger, A.; Zhiboedov, A., Gravitational Memory, BMS Supertranslations and Soft Theorems, JHEP, 01, 086 (2016) · Zbl 1388.83072 · doi:10.1007/JHEP01(2016)086
[5] He, T.; Mitra, P.; Porfyriadis, AP; Strominger, A., New Symmetries of Massless QED, JHEP, 10, 112 (2014) · doi:10.1007/JHEP10(2014)112
[6] Kapec, D.; Pate, M.; Strominger, A., New Symmetries of QED, Adv. Theor. Math. Phys., 21, 1769 (2017) · Zbl 1383.81351 · doi:10.4310/ATMP.2017.v21.n7.a7
[7] Kapec, D.; Lysov, V.; Strominger, A., Asymptotic Symmetries of Massless QED in Even Dimensions, Adv. Theor. Math. Phys., 21, 1747 (2017) · Zbl 1386.81145 · doi:10.4310/ATMP.2017.v21.n7.a6
[8] Kapec, D.; Lysov, V.; Pasterski, S.; Strominger, A., Higher-dimensional supertranslations and Weinberg’s soft graviton theorem, Ann. Math. Sci. Appl., 02, 69 (2017) · Zbl 1382.83087
[9] Pate, M.; Raclariu, A-M; Strominger, A., Gravitational Memory in Higher Dimensions, JHEP, 06, 138 (2018) · Zbl 1395.83100 · doi:10.1007/JHEP06(2018)138
[10] Kapec, D.; Lysov, V.; Pasterski, S.; Strominger, A., Semiclassical Virasoro symmetry of the quantum gravity \(\mathcal{S} \)-matrix, JHEP, 08, 058 (2014) · doi:10.1007/JHEP08(2014)058
[11] Kapec, D.; Mitra, P.; Raclariu, A-M; Strominger, A., 2D Stress Tensor for 4D Gravity, Phys. Rev. Lett., 119, 121601 (2017) · doi:10.1103/PhysRevLett.119.121601
[12] He, T.; Kapec, D.; Raclariu, A-M; Strominger, A., Loop-Corrected Virasoro Symmetry of 4D Quantum Gravity, JHEP, 08, 050 (2017) · Zbl 1381.83034 · doi:10.1007/JHEP08(2017)050
[13] Campiglia, M.; Laddha, A., Asymptotic symmetries of QED and Weinberg’s soft photon theorem, JHEP, 07, 115 (2015) · Zbl 1388.83199 · doi:10.1007/JHEP07(2015)115
[14] Campiglia, M.; Laddha, A., Asymptotic symmetries of gravity and soft theorems for massive particles, JHEP, 12, 094 (2015) · Zbl 1388.83095
[15] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond.A 269 (1962) 21. · Zbl 0106.41903
[16] R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond.A 270 (1962) 103. · Zbl 0101.43605
[17] Sachs, R., Asymptotic symmetries in gravitational theory, Phys. Rev., 128, 2851 (1962) · Zbl 0114.21202 · doi:10.1103/PhysRev.128.2851
[18] Barnich, G.; Troessaert, C., Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett., 105, 111103 (2010) · doi:10.1103/PhysRevLett.105.111103
[19] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[20] S. Banerjee, P. Pandey and P. Paul, Conformal properties of soft-operators — 1: Use of null-states, arXiv:1902.02309 [INSPIRE]. · Zbl 1435.83009
[21] Weinberg, S., Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev., 135, B1049 (1964) · Zbl 0144.23702 · doi:10.1103/PhysRev.135.B1049
[22] Weinberg, S., Infrared photons and gravitons, Phys. Rev., 140, B516 (1965) · doi:10.1103/PhysRev.140.B516
[23] F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].
[24] Sahoo, B.; Sen, A., Classical and Quantum Results on Logarithmic Terms in the Soft Theorem in Four Dimensions, JHEP, 02, 086 (2019) · Zbl 1411.83029 · doi:10.1007/JHEP02(2019)086
[25] Campiglia, M.; Laddha, A., Loop Corrected Soft Photon Theorem as a Ward Identity, JHEP, 10, 287 (2019) · doi:10.1007/JHEP10(2019)287
[26] Penedones, J.; Trevisani, E.; Yamazaki, M., Recursion Relations for Conformal Blocks, JHEP, 09, 070 (2016) · Zbl 1390.81533 · doi:10.1007/JHEP09(2016)070
[27] J. Erdmenger and H. Osborn, Conformally covariant differential operators: Symmetric tensor fields, Class. Quant. Grav.15 (1998) 273 [gr-qc/9708040] [INSPIRE]. · Zbl 0912.53058
[28] Dolan, L.; Nappi, CR; Witten, E., Conformal operators for partially massless states, JHEP, 10, 016 (2001) · doi:10.1088/1126-6708/2001/10/016
[29] Beccaria, M.; Tseytlin, AA, On higher spin partition functions, J. Phys., A 48, 275401 (2015) · Zbl 1330.81166
[30] G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, PoS(CNCFG2010)010 [Ann. U. Craiova Phys.21 (2011) S11] [arXiv:1102.4632] [INSPIRE]. · Zbl 1287.83043
[31] Giveon, A.; Kutasov, D.; Seiberg, N., Comments on string theory on AdS3, Adv. Theor. Math. Phys., 2, 733 (1998) · Zbl 1041.81575 · doi:10.4310/ATMP.1998.v2.n4.a3
[32] Kutasov, D.; Seiberg, N., More comments on string theory on AdS_3, JHEP, 04, 008 (1999) · Zbl 0953.81071 · doi:10.1088/1126-6708/1999/04/008
[33] Y. Geyer, A.E. Lipstein and L. Mason, Ambitwistor strings at null infinity and (subleading) soft limits, Class. Quant. Grav.32 (2015) 055003 [arXiv:1406.1462] [INSPIRE]. · Zbl 1309.83090
[34] Lipstein, AE, Soft Theorems from Conformal Field Theory, JHEP, 06, 166 (2015) · Zbl 1388.83296 · doi:10.1007/JHEP06(2015)166
[35] Kapec, D.; Mitra, P., A d-Dimensional Stress Tensor for Mink_d+2Gravity, JHEP, 05, 186 (2018) · Zbl 1391.83095 · doi:10.1007/JHEP05(2018)186
[36] S. Pasterski, S.-H. Shao and A. Strominger, Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere, Phys. Rev.D 96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].
[37] S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev.D 96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].
[38] S. Pasterski, S.-H. Shao and A. Strominger, Gluon Amplitudes as 2d Conformal Correlators, Phys. Rev.D 96 (2017) 085006 [arXiv:1706.03917] [INSPIRE].
[39] Cheung, C.; de la Fuente, A.; Sundrum, R., 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP, 01, 112 (2017) · Zbl 1373.81319 · doi:10.1007/JHEP01(2017)112
[40] de Boer, J.; Solodukhin, SN, A holographic reduction of Minkowski space-time, Nucl. Phys., B 665, 545 (2003) · Zbl 1038.83030
[41] Banerjee, S., Null Infinity and Unitary Representation of The Poincaŕe Group, JHEP, 01, 205 (2019) · Zbl 1409.83002 · doi:10.1007/JHEP01(2019)205
[42] Banerjee, S., Symmetries of free massless particles and soft theorems, Gen. Rel. Grav., 51, 128 (2019) · Zbl 1430.83008 · doi:10.1007/s10714-019-2609-z
[43] Cardona, C.; Huang, Y-t, S-matrix singularities and CFT correlation functions, JHEP, 08, 133 (2017) · Zbl 1381.81109 · doi:10.1007/JHEP08(2017)133
[44] H.T. Lam and S.-H. Shao, Conformal Basis, Optical Theorem and the Bulk Point Singularity, Phys. Rev.D 98 (2018) 025020 [arXiv:1711.06138] [INSPIRE].
[45] Banerjee, N.; Banerjee, S.; Atul Bhatkar, S.; Jain, S., Conformal Structure of Massless Scalar Amplitudes Beyond Tree level, JHEP, 04, 039 (2018) · Zbl 1390.81482 · doi:10.1007/JHEP04(2018)039
[46] Schreiber, A.; Volovich, A.; Zlotnikov, M., Tree-level gluon amplitudes on the celestial sphere, Phys. Lett., B 781, 349 (2018) · Zbl 1398.81273 · doi:10.1016/j.physletb.2018.04.010
[47] Donnay, L.; Puhm, A.; Strominger, A., Conformally Soft Photons and Gravitons, JHEP, 01, 184 (2019) · Zbl 1409.81116 · doi:10.1007/JHEP01(2019)184
[48] Fan, W.; Fotopoulos, A.; Taylor, TR, Soft Limits of Yang-Mills Amplitudes and Conformal Correlators, JHEP, 05, 121 (2019) · Zbl 1416.81150
[49] M. Pate, A.-M. Raclariu and A. Strominger, Conformally Soft Theorem in Gauge Theory, Phys. Rev.D 100 (2019) 085017 [arXiv:1904.10831] [INSPIRE].
[50] Ball, A.; Himwich, E.; Narayanan, SA; Pasterski, S.; Strominger, A., Uplifting AdS_3/CFT_2to flat space holography, JHEP, 08, 168 (2019) · Zbl 1421.83094 · doi:10.1007/JHEP08(2019)168
[51] Adamo, T.; Mason, L.; Sharma, A., Celestial amplitudes and conformal soft theorems, Class. Quant. Grav., 36, 205018 (2019) · Zbl 1478.81036 · doi:10.1088/1361-6382/ab42ce
[52] A. Puhm, Conformally Soft Theorem in Gravity, arXiv:1905.09799 [INSPIRE].
[53] He, T.; Mitra, P., Asymptotic symmetries and Weinberg’s soft photon theorem in Minkd+2, JHEP, 10, 213 (2019) · doi:10.1007/JHEP10(2019)213
[54] Bagchi, A.; Basu, R.; Kakkar, A.; Mehra, A., Flat Holography: Aspects of the dual field theory, JHEP, 12, 147 (2016) · Zbl 1390.83081 · doi:10.1007/JHEP12(2016)147
[55] Hugh Osborn, Lectures on conformal field theories in more than two dimensions, http://www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf. · Zbl 0916.53049
[56] K. Peeters, Introducing Cadabra: A symbolic computer algebra system for field theory problems, hep-th/0701238 [INSPIRE]. · Zbl 1196.68333
[57] K. Peeters, A Field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun.176 (2007) 550 [cs/0608005] [INSPIRE]. · Zbl 1196.68333
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.