×

Navigating collinear superspace. (English) Zbl 1435.81209

Summary: We introduce a new set of effective field theory rules for constructing Lagrangians with \(\mathcal{N} = 1\) supersymmetry in collinear superspace. In the standard superspace treatment, superfields are functions of the coordinates \(\left({x}^{\mu},{\theta}^{\alpha},{\theta}^{\dagger \overset{\cdot }{\alpha}}\right)\), and supersymmetry preservation is manifest at the Lagrangian level in part due to the inclusion of auxiliary \(F\)- and \(D\)-term components. By contrast, collinear superspace depends on a smaller set of coordinates \((x^\mu, \eta, \eta^†{})\), where \(\eta\) is a complex Grassmann number without a spinor index. This provides a formulation of supersymmetric theories that depends exclusively on propagating degrees of freedom, at the expense of obscuring Lorentz invariance and introducing inverse momentum scales. After establishing the general framework, we construct collinear superspace Lagrangians for free chiral matter and non-abelian gauge fields. For the latter construction, an important ingredient is a superfield representation that is simultaneously chiral, anti-chiral, and real; this novel object encodes residual gauge transformations on the light cone. Additionally, we discuss a fundamental obstruction to constructing inter-acting theories with chiral matter; overcoming these issues is the subject of our companion paper, where we introduce a larger set of superfields to realize the full range of interactions compatible with \(\mathcal{N} = 1\). Along the way, we provide a novel framing of reparametrization invariance using a spinor decomposition, which provides insight into this important light-cone symmetry.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
15A75 Exterior algebra, Grassmann algebras
16W55 “Super” (or “skew”) structure
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism

References:

[1] Seiberg, N., Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys., B 435, 129 (1995) · Zbl 1020.81912
[2] Seiberg, N.; Witten, E., Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys., B 431, 484 (1994) · Zbl 1020.81911
[3] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys.B 426 (1994) 19 [Erratum ibid.B 430 (1994) 485] [hep-th/9407087] [INSPIRE]. · Zbl 0996.81511
[4] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047
[5] Pestun, V., Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys., 313, 71 (2012) · Zbl 1257.81056
[6] Erickson, JK; Semenoff, GW; Zarembo, K., Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys., B 582, 155 (2000) · Zbl 0984.81154
[7] Bianchi, M.; Elvang, H.; Freedman, DZ, Generating Tree Amplitudes in N = 4 SYM and N = 8 SG, JHEP, 09, 063 (2008) · Zbl 1245.81083
[8] Komargodski, Z.; Seiberg, N., From Linear SUSY to Constrained Superfields, JHEP, 09, 066 (2009)
[9] Festuccia, G.; Seiberg, N., Rigid Supersymmetric Theories in Curved Superspace, JHEP, 06, 114 (2011) · Zbl 1298.81145
[10] Kahn, Y.; Roberts, DA; Thaler, J., The goldstone and goldstino of supersymmetric inflation, JHEP, 10, 001 (2015) · Zbl 1388.83925
[11] S. Ferrara, R. Kallosh and J. Thaler, Cosmology with orthogonal nilpotent superfields, Phys. Rev.D 93 (2016) 043516 [arXiv:1512.00545] [INSPIRE].
[12] Dall’Agata, G.; Dudas, E.; Farakos, F., On the origin of constrained superfields, JHEP, 05, 041 (2016)
[13] Delacretaz, LV; Gorbenko, V.; Senatore, L., The Supersymmetric Effective Field Theory of Inflation, JHEP, 03, 063 (2017) · Zbl 1377.83152
[14] Cacciatori, SL; Noja, S., Projective Superspaces in Practice, J. Geom. Phys., 130, 40 (2018) · Zbl 1392.58006
[15] Salam, A.; Strathdee, JA, Supergauge Transformations, Nucl. Phys., B 76, 477 (1974)
[16] Ferrara, S.; Wess, J.; Zumino, B., Supergauge Multiplets and Superfields, Phys. Lett., B 51, 239 (1974)
[17] A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic superspace, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2007).
[18] Galperin, AS; Ivanov, EA; Ogievetsky, VI; Sokatchev, ES, Harmonic Superspace: Key To N = 2 Supersymmetry Theories, JETP Lett., 40, 912 (1984)
[19] Akulov, VP; Sorokin, DP; Bandos, IA, Particle Mechanics in Harmonic Superspace, Mod. Phys. Lett., A 3, 1633 (1988)
[20] Howe, PS, On harmonic superspace, Lect. Notes Phys., 524, 68 (1999)
[21] Davgadorj, A.; von Unge, R., \( \mathcal{N} = 2\) super Yang-Mills theory in projective superspace, Phys. Rev., D 97, 105017 (2018)
[22] A.S. Galperin, E.A. Ivanov, S. Kalitsyn, V.I. Ogievetsky and E.S. Sokatchev, Unconstrained N = 2 Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace, Class. Quant. Grav.1 (1984) 469 [Corrigendum ibid.2 (1985) 127] [INSPIRE].
[23] Sokatchev, ES, Light Cone Harmonic Superspace and Its Applications, Phys. Lett., B 169, 209 (1986)
[24] E.A. Ivanov, S. Kalitsyn, A.V. Nguyen and V.I. Ogievetsky, Harmonic Superspaces of Extended Supersymmetry. The Calculus of Harmonic Variables, J. Phys.A 18 (1985) 3433 [INSPIRE].
[25] Ohta, N.; Yamaguchi, H., Superfield Perturbation Theory in Harmonic Superspace, Phys. Rev., D 32, 1954 (1985)
[26] Ivanov, EA; Lechtenfeld, O., N = 4 supersymmetric mechanics in harmonic superspace, JHEP, 09, 073 (2003)
[27] Mandelstam, S., Light Cone Superspace and the Ultraviolet Finiteness of the N = 4 Model, Nucl. Phys., B 213, 149 (1983)
[28] Brink, L.; Lindgren, O.; Nilsson, BEW, N = 4 Yang-Mills Theory on the Light Cone, Nucl. Phys., B 212, 401 (1983)
[29] Brink, L.; Lindgren, O.; Nilsson, BEW, The Ultraviolet Finiteness of the N = 4 Yang-Mills Theory, Phys. Lett., B 123, 323 (1983)
[30] T. Cohen, G. Elor, A.J. Larkoski and J. Thaler, Circumnavigating Collinear Superspace, arXiv:1909.00009 [INSPIRE]. · Zbl 1435.81210
[31] Cohen, T.; Elor, G.; Larkoski, AJ, Collinear Superspace, Phys. Rev., D 93, 125013 (2016)
[32] Cohen, T.; Elor, G.; Larkoski, AJ, Soft-Collinear Supersymmetry, JHEP, 03, 017 (2017) · Zbl 1377.81100
[33] C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev.D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
[34] C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett.B 516 (2001) 134 [hep-ph/0107001] [INSPIRE]. · Zbl 0971.81569
[35] C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev.D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
[36] Belitsky, AV; Derkachov, SE; Korchemsky, GP; Manashov, AN, Quantum integrability in superYang-Mills theory on the light cone, Phys. Lett., B 594, 385 (2004) · Zbl 1247.81459
[37] Kallosh, R., N = 8 Supergravity on the Light Cone, Phys. Rev., D 80, 105022 (2009)
[38] Green, MB; Gutperle, M., Light cone supersymmetry and D-branes, Nucl. Phys., B 476, 484 (1996) · Zbl 0925.81360
[39] Hearin, P., Light-Cone Superspace BPS Theory, Nucl. Phys., B 846, 226 (2011) · Zbl 1208.81178
[40] Ramond, P., Still in Light-Cone Superspace, Int. J. Mod. Phys., A 25, 367 (2010) · Zbl 1184.81114
[41] Siegel, W.; Gates, SJ Jr, Superprojectors, Nucl. Phys., B 189, 295 (1981)
[42] Brink, L.; Schwarz, JH, Quantum Superspace, Phys. Lett., B 100, 310 (1981)
[43] Manohar, Aneesh V.; Mehen, Thomas; Pirjol, Dan; Stewart, Iain W., Reparameterization invariance for collinear operators, Physics Letters B, 539, 1-2, 59-66 (2002) · Zbl 0996.81518
[44] Becher, T.; Broggio, A.; Ferroglia, A., Introduction to Soft-Collinear Effective Theory, Lect. Notes Phys., 896, 1 (2015)
[45] Gates, SJ Jr, On-shell and Conformal N = 4 Supergravity in Superspace, Nucl. Phys., B 213, 409 (1983)
[46] L. Brink, The On-shell N = 8 Supergravity in Superspace, in Unification of the Fundamental Particle Interactions, Ettore Majorana International Science Series, volume 7, Springer, Boston MA U.S.A. (1980), pp. 157-169.
[47] H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE]. · Zbl 1332.81010
[48] Haag, R.; Lopuszanski, JT; Sohnius, M., All Possible Generators of Supersymmetries of the S-Matrix, Nucl. Phys., B 88, 257 (1975)
[49] Coleman, SR; Mandula, J., All Possible Symmetries of the S Matrix, Phys. Rev., 159, 1251 (1967) · Zbl 0168.23702
[50] Dreiner, HK; Haber, HE; Martin, SP, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept., 494, 1 (2010)
[51] Binetruy, P., Supersymmetry: Theory, experiment and cosmology (2006), Oxford U.K.: Oxford University Press, Oxford U.K. · Zbl 1123.81005
[52] Leibbrandt, G., The Light Cone Gauge in Yang-Mills Theory, Phys. Rev., D 29, 1699 (1984)
[53] Larkoski, AJ; Neill, D.; Stewart, IW, Soft Theorems from Effective Field Theory, JHEP, 06, 077 (2015) · Zbl 1388.81916
[54] C. Marcantonini and I.W. Stewart, Reparameterization Invariant Collinear Operators, Phys. Rev.D 79 (2009) 065028 [arXiv:0809.1093] [INSPIRE].
[55] D. Bertolini, J. Thaler and Z. Thomas, Super-Tricks for Superspace, in proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: Searching for New Physics at Small and Large Scales (TASI 2012), Boulder, Colorado, U.S.A., 4-29 June 2012, pp. 421-496 [arXiv:1302.6229] [INSPIRE].
[56] Leibbrandt, G., Introduction to Noncovariant Gauges, Rev. Mod. Phys., 59, 1067 (1987)
[57] Kogut, JB; Soper, DE, Quantum Electrodynamics in the Infinite Momentum Frame, Phys. Rev., D 1, 2901 (1970)
[58] J. Heinonen, R.J. Hill and M.P. Solon, Lorentz invariance in heavy particle effective theories, Phys. Rev.D 86 (2012) 094020 [arXiv:1208.0601] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.