×

Effective quantum field theory for the thermodynamical Bethe ansatz. (English) Zbl 1435.81197

Summary: We construct an effective Quantum Field Theory for the wrapping effects in 1+1 dimensional models of factorised scattering. The recently developed graph-theoretical approach to TBA gives the perturbative desctiption of this QFT. For the sake of simplicity we limit ourselves to scattering matrices for a single neutral particle and no bound state poles, such as the sinh-Gordon one. On the other hand, in view of applications to AdS/CFT, we do not assume that the scattering matrix is of difference type. The effective QFT involves both bosonic and fermionic fields and possesses a symmetry which makes it one-loop exact. The corresponding path integral localises to a critical point determined by the TBA equation.

MSC:

81T45 Topological field theories in quantum mechanics
81R12 Groups and algebras in quantum theory and relations with integrable systems
81S40 Path integrals in quantum mechanics
80A10 Classical and relativistic thermodynamics

References:

[1] A.B. Zamolodchikov, Thermodynamic Bethe Ansatz in relativistic models. Scaling three state Potts and Lee-Yang models, Nucl. Phys.B 342 (1990) 695 [INSPIRE].
[2] Zamolodchikov, AB, From tricritical Ising to critical Ising by thermodynamic Bethe ansatz, Nucl. Phys., B 358, 524 (1991)
[3] Zamolodchikov, AB, TBA equations for integrable perturbed SU(2)_k × SU(2)_l/SU(2)_k+lcoset models, Nucl. Phys., B 366, 122 (1991)
[4] Yang, C-N; Yang, CP, Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction, J. Math. Phys., 10, 1115 (1969) · Zbl 0987.82503
[5] Beisert, N., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys., 99, 3 (2012) · Zbl 1268.81126
[6] M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 1. Stable Particle States, Commun. Math. Phys.104 (1986) 177 [INSPIRE]. · Zbl 0614.58014
[7] Kato, G.; Wadati, M., Bethe Ansatz Cluster Expansion Method for Quantum Integrable Particle Systems, J. Phys. Soc. Jap., 73, 1171 (2004) · Zbl 1075.82008
[8] G. Kato and M. Wadati, Direct calculation of thermodynamic quantities for the Heisenberg model, J. Math. Phys.43 (2002) 5060 [cond-mat/0212325]. · Zbl 1060.82009
[9] G. Kato and M. Wadati, Graphical representation of the partition function of a one-dimensi onal δ-function Bose gas, J. Math. Phys.42 (2001) 4883 [cond-mat/0212323]. · Zbl 1063.82005
[10] G. Kato and M. Wadati, Partition function for a one-dimensional δ-function Bose gas, Phys. Rev.E 63 (2001) 036106 [cond-mat/0212321]. · Zbl 1076.82510
[11] Kostov, I.; Serban, D.; Vu, D-L, TBA and tree expansion, Springer Proc. Math. Stat., 255, 77 (2017) · Zbl 1406.82008
[12] Kostov, I.; Serban, D.; Vu, D-L, Boundary TBA, trees and loops, Nucl. Phys., B 949, 114817 (2019) · Zbl 1435.82010
[13] Vu, D-L; Yoshimura, T., Equations of state in generalized hydrodynamics, SciPost Phys., 6, 023 (2019)
[14] D.-L. Vu, Cumulants of conserved charges in GGE and cumulants of total transport in GHD: exact summation of matrix elements?, arXiv:1909.08852 [INSPIRE]. · Zbl 1459.82079
[15] F. Woynarovich, O(1) contribution of saddle point fluctuations to the free energy of Bethe Ansatz systems, Nucl. Phys.B 700 (2004) 331 [cond-mat/0402129] [INSPIRE]. · Zbl 1123.82327
[16] Pozsgay, B., On O(1) contributions to the free energy in Bethe Ansatz systems: The Exact g-function, JHEP, 08, 090 (2010) · Zbl 1290.82011
[17] Y. Jiang, S. Komatsu and E. Vescovi, Structure Constants in \(\mathcal{N} = 4\) SYM at Finite Coupling as Worldsheet g-Function, arXiv:1906.07733 [INSPIRE]. · Zbl 1451.81360
[18] N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, in Proceedings, 16th International Congress on Mathematical Physics (ICMP09): Prague, Czech Republic, August 3-8, 2009, pp. 265-289, 2009, DOI [arXiv:0908.4052] [INSPIRE]. · Zbl 1214.83049
[19] Balog, J., Field theoretical derivation of the TBA integral equation, Nucl. Phys., B 419, 480 (1994) · Zbl 0990.82503
[20] Polyakov, AM; Wiegmann, PB, Theory of nonabelian Goldstone bosons in two dimensions, Phys. Lett., 131B, 121 (1983)
[21] E. Ogievetsky, N. Reshetikhin and P. Wiegmann, The principal chiral field in two-dimension and classical Lie algebra, NORDITA-84/38.
[22] Faddeev, LD; Reshetikhin, NY, Integrability of the Principal Chiral Field Model in (1+1)-dimension, Annals Phys., 167, 227 (1986)
[23] Destri, C.; De Vega, HJ, Unified approach to thermodynamic Bethe Ansatz and finite size corrections for lattice models and field theories, Nucl. Phys., B 438, 413 (1995) · Zbl 1052.82529
[24] Destri, C.; de Vega, HJ, Non-linear integral equation and excited-states scaling functions in the sine-Gordon model, Nucl. Phys., B 504, 621 (1997) · Zbl 0925.81029
[25] P. Zinn-Justin, Quelques applications de l’ansatz de Bethe, Ph.D. Thesis, Paris University, France (1998).
[26] Volin, D., Quantum integrability and functional equations: Applications to the spectral problem of AdS/CFT and two-dimensional σ-models, J. Phys., A 44, 124003 (2011) · Zbl 1222.81252
[27] Teschner, J., On the spectrum of the Sinh-Gordon model in finite volume, Nucl. Phys., B 799, 403 (2008) · Zbl 1292.81070
[28] Lukyanov, SL, Free field representation for massive integrable models, Commun. Math. Phys., 167, 183 (1995) · Zbl 0818.46079
[29] Woynarovich, F., On the normalization of the partition function of Bethe Ansatz systems, Nucl. Phys., B 852, 269 (2011) · Zbl 1229.82081
[30] Jiang, Y.; Komatsu, S.; Vescovi, E., Exact Three-Point Functions of Determinant Operators in Planar N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett., 123, 191601 (2019)
[31] Klassen, TR; Melzer, E., Purely Elastic Scattering Theories and their Ultraviolet Limits, Nucl. Phys., B 338, 485 (1990)
[32] Pestun, V., Review of localization in geometry, J. Phys., A 50, 443002 (2017) · Zbl 1377.81092
[33] Vu, D-L; Kostov, I.; Serban, D., Boundary entropy of integrable perturbed SU(2)_kWZNW, JHEP, 08, 154 (2019) · Zbl 1421.81081
[34] Zamolodchikov, AB, On the thermodynamic Bethe ansatz equation in sinh-Gordon model, J. Phys., A 39, 12863 (2006) · Zbl 1129.81057
[35] Lukyanov, SL, Finite temperature expectation values of local fields in the sinh-Gordon model, Nucl. Phys., B 612, 391 (2001) · Zbl 0970.81041
[36] Bytsko, AG; Teschner, J., Quantization of models with non-compact quantum group symmetry: Modular XXZ magnet and lattice sinh-Gordon model, J. Phys., A 39, 12927 (2006) · Zbl 1107.82008
[37] Negro, S.; Smirnov, F., On one-point functions for sinh-Gordon model at finite temperature, Nucl. Phys., B 875, 166 (2013) · Zbl 1282.81161
[38] Bajnok, Z.; Smirnov, F., Diagonal finite volume matrix elements in the sinh-Gordon model, Nucl. Phys., B 945, 114664 (2019) · Zbl 1430.81047
[39] N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum Spectral Curve for Planar \(\mathcal{N} = 4\) Super-Yang-Mills Theory, Phys. Rev. Lett.112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].
[40] Gromov, N.; Kazakov, V.; Leurent, S.; Volin, D., Quantum spectral curve for arbitrary state/operator in AdS_5/CFT_4, JHEP, 09, 187 (2015) · Zbl 1388.81214
[41] Kulish, PP; Reshetikhin, NY, Diagonalization of GL(N) invariant transfer matrices and quantum N-wave system (Lee model), J. Phys., A 16, L591 (1983) · Zbl 0545.35082
[42] Ahn, C.; Bajnok, Z.; Bombardelli, D.; Nepomechie, RI, TBA, NLO Lüscher correction and double wrapping in twisted AdS/CFT, JHEP, 12, 059 (2011) · Zbl 1306.81143
[43] F. Coronado, Bootstrapping the simplest correlator in planar \(\mathcal{N} = 4\) SYM at all loops, arXiv:1811.03282 [INSPIRE].
[44] Coronado, F., Perturbative four-point functions in planar \(\mathcal{N} = 4\) SYM from hexagonalization, JHEP, 01, 056 (2019) · Zbl 1409.81142
[45] A.V. Belitsky and G.P. Korchemsky, Exact null octagon, arXiv:1907.13131 [INSPIRE]. · Zbl 1437.81088
[46] Bargheer, T.; Coronado, F.; Vieira, P., Octagons I: Combinatorics and Non-Planar Resummations, JHEP, 08, 162 (2019) · Zbl 1421.81131
[47] T. Bargheer, F. Coronado and P. Vieira, Octagons II: Strong Coupling, arXiv:1909.04077 [INSPIRE]. · Zbl 1421.81131
[48] Kostov, I.; Petkova, VB; Serban, D., The Octagon as a Determinant, JHEP, 11, 178 (2019) · Zbl 1429.81073
[49] Kostov, I.; Petkova, VB; Serban, D., Determinant formula for the octagon form factor in \(\mathcal{N} = 4\) SYM, Phys. Rev. Lett., 122, 231601 (2019)
[50] B. Basso, S. Komatsu and P. Vieira, Structure Constants and Integrable Bootstrap in Planar N = 4 SYM Theory, arXiv:1505.06745 [INSPIRE].
[51] Basso, B.; Goncalves, V.; Komatsu, S., Structure constants at wrapping order, JHEP, 05, 124 (2017) · Zbl 1380.81289
[52] S. Komatsu, Lectures on Three-point Functions in N = 4 Supersymmetric Yang-Mills Theory, in Proceedings, Les Houches Summer School: Integrability: From Statistical Systems to Gauge Theory: Les Houches, France, vol. 106, 2019, DOI [arXiv:1710.03853] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.