×

Quantum protocol for millionaire problem. (English) Zbl 1435.68104

Summary: A quantum protocol for millionaire problem based on commutative encryption is proposed. In our protocol, Alice and Bob don’t have to use the entangled character, joint measurement of quantum states. They encrypt their private information and privately get the result of their private information with the help of a third party (TP). Correctness analysis shows that the proposed protocol can be used to get the result of their private information correctly. The proposed protocol can also resist various attacks and overcomes the problem of information leakage with acceptable efficiency. In theory, our protocol can be used to build complex secure protocols for other multiparty computation problems and also have lots of other important applications in distributed networks.

MSC:

68Q12 Quantum algorithms and complexity in the theory of computing
81P94 Quantum cryptography (quantum-theoretic aspects)
94A60 Cryptography
Full Text: DOI

References:

[1] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, p 218. ACM, New York (1987) · Zbl 0636.94010
[2] Yang, Y.G., Wen, Q.Y.: An, efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009) · Zbl 1156.81364 · doi:10.1088/1751-8113/42/5/055305
[3] Chen, X.B., Xu, G., Niu, X.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561-1565 (2010) · doi:10.1016/j.optcom.2009.11.085
[4] Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf Process 11, 373-384 (2012) · Zbl 1239.81037 · doi:10.1007/s11128-011-0251-0
[5] Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 1561-1565 (2011) · doi:10.1016/j.optcom.2010.11.072
[6] Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with chi-type state. Int. J. Theor. Phys. 51(1), 69-77 (2011) · Zbl 1246.81047 · doi:10.1007/s10773-011-0878-8
[7] Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51, 3596-3604 (2012) · Zbl 1262.81041 · doi:10.1007/s10773-012-1246-z
[8] Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol using chi-type state. Int. J. Theor. Phys. 51(6), 1953-1960 (2012) · Zbl 1251.81033 · doi:10.1007/s10773-011-1073-7
[9] Liu, W., Wang, Y.B., Tao, J.Z., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57(4), 583-588 (2012) · Zbl 1247.81097 · doi:10.1088/0253-6102/57/4/11
[10] Liu, W., Wang, Y.B., Wang, X.M.: Quantum multi-party private comparison protocol using d-dimensional Bell states. Int. J. Theor. Phys. 54, 1830-1839 (2015) · Zbl 1317.81081 · doi:10.1007/s10773-014-2388-y
[11] Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53, 1085-1091 (2014) · Zbl 1297.81064 · doi:10.1007/s10773-013-1903-x
[12] Liu, W., Wang, Y.B.: Dynamic multi-party quantum private comparison protocol with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55, 5307-5317 (2016) · Zbl 1371.81091 · doi:10.1007/s10773-016-3150-4
[13] Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545-549 (2011) · doi:10.1016/j.optcom.2010.09.005
[14] Lin, S., Sun, Y., Liu, X.-F., Yao, Z.-Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process 12(1), 559-568 (2013) · Zbl 1277.94031 · doi:10.1007/s11128-012-0395-6
[15] Zhang, W.W., Li, D., Zhang, K.J., et al.: A quantum protocol for millionaire problem with Bell states. Quantum Inf. Process. 12, 2241-2249 (2013) · Zbl 1267.81134 · doi:10.1007/s11128-012-0520-6
[16] Guo, FZ; Gao, F.; Qin, SJ; etal., No article title, Quantum Inf. Process., 12, 2793 (2013) · Zbl 1283.81049 · doi:10.1007/s11128-013-0536-6
[17] Zhou, Y.H., Shi, W.M., Yang, Y.G.: A quantum protocol for millionaire problem with continuous variables. Commun. Theor. Phys. 61, 452-456 (2014) · doi:10.1088/0253-6102/61/4/08
[18] Hillery, M.; Ziman, M.; Buek, V.; Bielikov, M., No article title, Phys. Lett. A, 349, 75 (2006) · Zbl 1195.81032 · doi:10.1016/j.physleta.2005.09.010
[19] Du, J.Z., Chen, X.B., Wen, Q.X., Zhu, F.C.: Secure multiparty quantum summation. Acta. Phys. Sin-Ch Ed 56, 6214-6219 (2007)
[20] Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49, 2793-2804 (2010) · Zbl 1203.81047 · doi:10.1007/s10773-010-0472-5
[21] Zhang, C., Sun, Z.-W., Huang, X.: Three-party quantum summation without a trusted third party. Int. J. Quantum Inf. 13(2), 1550011 (2015) · Zbl 1328.81076 · doi:10.1142/S0219749915500112
[22] Zhang, C., Sun, Z., Huang, Y.: High-capacity quantum summation with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 53(3), 933-941 (2014) · Zbl 1284.81079 · doi:10.1007/s10773-013-1884-9
[23] Shi, R.-H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016) · doi:10.1038/srep19655
[24] Wei, C., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2-8 (2018) · Zbl 1390.81134 · doi:10.1109/TC.2017.2721404
[25] Wei, C.Y., et al.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016) · doi:10.1103/PhysRevA.93.042318
[26] Gao, F., et al.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)
[27] Liu, B., et al.: QKD-Based quantum private query without a failure probability. Sci. China-Phys. Mech. Astron. 58, 100301 (2015) · doi:10.1007/s11433-015-5714-3
[28] Gao, F., et al.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20, 17411 (2012) · doi:10.1364/OE.20.017411
[29] Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocols. Sci. China-Phys. Mech. Astron. https://doi.org/10.1007/s11433-018-9324-6
[30] Wei, C., Cai, X., Liu, B., et al.: A generic construction of Quantum-Oblivious-Key-Transfer-Based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2-8 (2018) · Zbl 1390.81134 · doi:10.1109/TC.2017.2721404
[31] Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016) · doi:10.1103/PhysRevA.93.042318
[32] Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)
[33] Liu, B., Gao, F., Huang, W.: QKD-Based quantum private query without a failure probability. Sci. China-Phys. Mech. Astron. 58, 100301 (2015) · doi:10.1007/s11433-015-5714-3
[34] Shi, R.H., et al.: Quantum oblivious set-member decision protocol. Phys. Rev. A 92, 022309 (2015) · doi:10.1103/PhysRevA.92.022309
[35] Shi, R.H., et al.: Quantum private set intersection cardinality and its application to anonymous authentication. Inform. Sci. 370-371, 147-158 (2016) · Zbl 1428.81071 · doi:10.1016/j.ins.2016.07.071
[36] Xu, G., Chen, X.B., Li, J., Wang, C., Yang, Y.X., Li, Z.P.: Network coding for quantum cooperative multicast. Quantum Inf. Process 14, 4297-4322 (2015) · Zbl 1327.81107 · doi:10.1007/s11128-015-1098-6
[37] Li, J., Chen, X.B., Sun, X.M., Li, Z.P., Yang, Y.X.: Quantum network coding for multi-unicast problem based on 2d and 3d cluster states. Sci. China-Inf. Sci. 59, 042301 (2016) · doi:10.1007/s11432-016-5539-3
[38] Li, J., Chen, X.B., Xu, G., Yang, Y.X., Li, Z.P.: Perfect quantum network coding independent of classical network solutions. IEEE Commun. Lett. 19, 115-118 (2015) · doi:10.1109/LCOMM.2014.2379253
[39] Xu, G., Chen, X.B., Duo, Z., Li, Z.P., Yang, Y.X.: A novel protocol for multiparty quantum key management. Quantum Inf. Process 14, 2959-2980 (2015) · Zbl 1327.81173 · doi:10.1007/s11128-015-1021-1
[40] Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process 16, 244 (2017) · Zbl 1387.81045 · doi:10.1007/s11128-017-1690-z
[41] Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82), Washington, DC, USA, 160 (1982)
[42] Chaabouni, R, Lipmaa, H, Zhang, B.: A non-interactive range proof with constant communication. In: Proceedings of International Conference on Financial Cryptography and Data Security, Kralendijk, pp. 179-199 (2012)
[43] Gao, F., Qin, S.J., Wen, Q.Y., et al.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007) · Zbl 1152.81716
[44] Qin, S.J., Gao, F., Wen, Q.Y., et al.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secretsharing protocol. Phys. Rev. A 76, 062324 (2007) · doi:10.1103/PhysRevA.76.062324
[45] Lin, S., Gao, F., Guo, F.Z., et al.: Comment on Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 76, 036301 (2007) · doi:10.1103/PhysRevA.76.036301
[46] Lin, S., Wen, Q.Y., Gao, F., et al.: Improving the security of multiparty quantum secret sharing based on the improved Bostrom-Felbinger protocol. Opt. Commun. 281, 4553 (2008) · doi:10.1016/j.optcom.2008.05.026
[47] Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comment on experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101, 208901 (2008) · doi:10.1103/PhysRevLett.101.208901
[48] Song, T.T., Zhang, J., Gao, F., et al.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009) · doi:10.1088/1674-1056/18/4/007
[49] Chen, X.B., Tang, X., Xu, G., Dou, Z., Chen, Y.L., Yang, Y.X.: Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process 17, 225 (2018) · Zbl 1398.81070 · doi:10.1007/s11128-018-1988-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.