×

Adjusted sparse tensor product spectral Galerkin method for solving pseudodifferential equations on the sphere with random input data. (English) Zbl 1435.65209

Summary: An adjusted sparse tensor product spectral Galerkin approximation method based on spherical harmonics is introduced and analyzed for solving pseudodifferential equations on the sphere with random input data. These equations arise from geodesy where the sphere is taken as a model of the earth. Numerical solutions to the corresponding \(k\)-th order statistical moment equations are found in adjusted sparse tensor approximation spaces which are accordingly designed to the regularity of the data and the equation. Established convergence theorem shows that the adjusted sparse tensor Galerkin discretization is superior not only to the full tensor product but also to the standard sparse tensor counterpart when the statistical moments of the data are of mixed unequal regularity. Numerical experiments illustrate our theoretical results.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35R60 PDEs with randomness, stochastic partial differential equations
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
41A25 Rate of convergence, degree of approximation
35S15 Boundary value problems for PDEs with pseudodifferential operators
86A30 Geodesy, mapping problems
Full Text: DOI

References:

[1] Aubin, J.-P., Applied Functional Analysis (2000), New York: Wiley-Interscience, New York · Zbl 0946.46001
[2] Chernov, A., Sparse polynomial approximation in positive order Sobolev spaces with bounded mixed derivatives and applications to elliptic problems with random loading, Appl. Numer. Math., 62, 360-377 (2012) · Zbl 1253.65184 · doi:10.1016/j.apnum.2011.06.015
[3] Chernov, A.; Dũng, D., New explicit-in-dimension estimates for the cardinality of high-dimensional hyperbolic crosses and approximation of functions having mixed smoothness, J. Complex., 32, 92-121 (2016) · Zbl 1330.65038 · doi:10.1016/j.jco.2015.09.001
[4] Chernov, A.; Pham, T. D., Sparse tensor product spectral Galerkin BEM for elliptic problems with random data on a spheroid, Adv. Comput. Math., 41, 77-104 (2015) · Zbl 1308.65194 · doi:10.1007/s10444-014-9350-7
[5] Chernov, A.; Schwab, C., Sparse \(p\)-version BEM for first kind boundary integral equations with random loading, Appl. Numer. Math., 59, 2698-2712 (2009) · Zbl 1177.65191 · doi:10.1016/j.apnum.2008.12.023
[6] Claessens, S.: Solutions to ellipsoidal boundary value problems for gravity field modelling. PhD thesis, Curtin University of Technology, Perth (2005)
[7] Cohen, A.; DeVore, R.; Schwab, C., Convergence rates of best \(N\)-term Galerkin approximations for a class of elliptic sPDEs, Found. Comput. Math., 10, 615-646 (2010) · Zbl 1206.60064 · doi:10.1007/s10208-010-9072-2
[8] Dũng, D.; Griebel, M., Hyperbolic cross approximation in infinite dimensions, J. Complex., 33, 55-88 (2016) · Zbl 1349.41053 · doi:10.1016/j.jco.2015.09.006
[9] Dũng, D.; Temlyakov, V.; Ullrich, T., Hyperbolic Cross Approximation (2018), Basel: Birkhäuser, Basel
[10] Freeden, W.; Gervens, T.; Schreiner, M., Constructive Approximation on the Sphere with Applications to Geomathematics (1998), Oxford: Oxford University Press, Oxford · Zbl 0896.65092
[11] Freeden, W.; Windheuser, U., Combined spherical harmonic and wavelet expansion—a future concept in Earth’s gravitational determination, Appl. Comput. Harmon. Anal., 4, 1-37 (1997) · Zbl 0865.42029 · doi:10.1006/acha.1996.0192
[12] Grafarend, E. W.; Krumm, F. W.; Schwarze, V. S., Geodesy: The Challenge of the 3rd Millennium (2003), Berlin: Springer, Berlin
[13] Hörmander, L., Pseudodifferential operators, Commun. Pure Appl. Math., 18, 501-517 (1965) · Zbl 0125.33401 · doi:10.1002/cpa.3160180307
[14] Hsiao, G. C.; Wendland, W. L., Boundary Integral Equations (2008), Berlin: Springer, Berlin · Zbl 1157.65066
[15] Huang, H.-Y.; Yu, D.-H., Natural boundary element method for three dimensional exterior harmonic problem with an inner prolate spheroid boundary, J. Comput. Math., 24, 193-208 (2006) · Zbl 1106.65104
[16] Khoromskij, B. N.; Oseledets, I., Quantics-TT collocation approximation of parameter-dependent and stochastic elliptic PDEs, Comput. Methods Appl. Math., 10, 376-394 (2010) · Zbl 1283.65039 · doi:10.2478/cmam-2010-0023
[17] Khoromskij, B. N.; Schwab, C., Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs, SIAM J. Sci. Comput., 33, 364-385 (2011) · Zbl 1243.65009 · doi:10.1137/100785715
[18] Kohn, J. J.; Nirenberg, L., On the algebra of pseudodifferential operators, Commun. Pure Appl. Math., 18, 269-305 (1965) · Zbl 0171.35101 · doi:10.1002/cpa.3160180121
[19] Langel, R. A.; Hinze, W. J., The Magnetic Field of the Earth’s Lithosphere, the Satellite Perspective (1998), Cambridge: Cambridge University Press, Cambridge
[20] Morton, T. M.; Neamtu, M., Error bounds for solving pseudodifferential equations on spheres, J. Approx. Theory, 114, 242-268 (2002) · Zbl 1004.65108 · doi:10.1006/jath.2001.3642
[21] Müller, C., Spherical Harmonics (1966), Berlin: Springer, Berlin · Zbl 0138.05101
[22] Nédélec, J.-C., Acoustic and Electromagnetic Equations (2000), New York: Springer, New York
[23] Nitsche, P.-A., Best \(N\) term approximation spaces for tensor product wavelet bases, Constr. Approx., 24, 49-70 (2006) · Zbl 1101.41021 · doi:10.1007/s00365-005-0609-6
[24] Petersen, B. E., Introduction to the Fourier transform & pseudodifferential operators (1983), Boston: Pitman, Boston · Zbl 0523.35001
[25] Pham, T. D.; Tran, T., Strongly elliptic pseudodifferential equations on the sphere with radial basis functions, Numer. Math., 128, 589-614 (2014) · Zbl 1305.65234 · doi:10.1007/s00211-014-0614-4
[26] Pham, T. D.; Tran, T., Solving non-strongly elliptic pseudodifferential equations on a sphere using radial basis functions, Comput. Math. Appl., 70, 1970-1983 (2015) · Zbl 1443.65365 · doi:10.1016/j.camwa.2015.08.018
[27] Pham, T. D.; Tran, T.; Chernov, A., Pseudodifferential equations on the sphere with spherical splines, Math. Models Methods Appl. Sci., 21, 1933-1959 (2011) · Zbl 1298.65177 · doi:10.1142/S021820251100560X
[28] Pinchon, D.; Hoggan, P. E., Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in space-fixed axes, J. Phys. A, 40, 1597-1610 (2007) · Zbl 1113.81064 · doi:10.1088/1751-8113/40/7/011
[29] Schwab, C.; Gittelson, C. J., Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs, Acta Numer., 20, 291-467 (2011) · Zbl 1269.65010 · doi:10.1017/S0962492911000055
[30] Schwab, C.; Todor, R.-A., Sparse finite elements for elliptic problems with stochastic loading, Numer. Math., 95, 707-734 (2003) · Zbl 1044.65085 · doi:10.1007/s00211-003-0455-z
[31] Schwab, C.; Todor, R. A., Sparse finite elements for stochastic elliptic problems—higher order moments, Computing, 71, 43-63 (2003) · Zbl 1044.65006 · doi:10.1007/s00607-003-0024-4
[32] Schwab, C.; Todor, R. A., Karhunen-Loève approximation of random fields by generalized fast multipole methods, J. Comput. Phys., 217, 100-122 (2006) · Zbl 1104.65008 · doi:10.1016/j.jcp.2006.01.048
[33] Stephan, E. P., Boundary integral equations for screen problems in \({{\mathbb{R}}}^3 \), Integral Equ. Oper. Theory, 10, 236-257 (1987) · Zbl 0653.35016 · doi:10.1007/BF01199079
[34] Svensson, S. L., Pseudodifferential operators—a new approach to the boundary problems of physical geodesy, Manuscr. Geod., 8, 1-40 (1983) · Zbl 0529.35076
[35] Tran, T.; Le Gia, Q. T.; Sloan, I. H.; Stephan, E. P., Boundary integral equations on the sphere with radial basis functions: error analysis, Appl. Numer. Math., 59, 2857-2871 (2009) · Zbl 1176.65147 · doi:10.1016/j.apnum.2008.12.033
[36] von Petersdorff, T.; Schwab, C., Sparse finite element methods for operator equations with stochastic data, Appl. Math., 51, 145-180 (2006) · Zbl 1164.65300 · doi:10.1007/s10492-006-0010-1
[37] Wendland, W. L.; Stephan, E. P., A hypersingular boundary integral method for two-dimensional screen and crack problems, Arch. Ration. Mech. Anal., 112, 363-390 (1990) · Zbl 0725.73091 · doi:10.1007/BF02384079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.