×

Doubly quasi-consistent fixed-stepsize numerical integration of stiff ordinary differential equations with implicit two-step peer methods. (English) Zbl 1435.65102

Summary: The problem of accurate and efficient numerical integration of ordinary differential equations (ODEs) is a key issue of computation science, which has a valued practical impact in various topics of research. In this respect, effective global error estimation and control strategies are of particular theoretical and practical significance. They allow many applied dynamic systems to be treated numerically for user-supplied accuracy conditions in automatic mode. The property of double quasi-consistency plays an outstanding role in the mentioned topic because the global (or true) error of a doubly quasi-consistent method is asymptotically equal to its local error. Therefore, this entails quite a nontrivial implication that the true error of numerical integration can be cheaply evaluated and regulated within a single solution run. The latter was considered to be impossible for decades. The property of double quasi-consistency goes back to 2009, when Kulikov studied it in the first time but failed to find doubly quasi-consistent numerical methods among Nordsieck formulas. Later on, Kulikov and Weiner proved the existence of doubly quasi-consistent numerical schemes among superconvergent explicit two-step parallel peer methods and examined their practical efficiency in comparison to explicit Matlab ODE solvers in 2010. The focus of the present research is on accurate numerical integration formulas for treating stiff ODEs, which often arise in practice and for which explicit methods are shown to be ineffective. Here, we make the first step towards an accurate and efficient numerical solution of stiff ODEs and prove existence of implicit doubly quasi-consistent formulas. We fulfill our investigation of double quasi-consistency within the family of fixed-stepsize implicit two-step peer schemes and construct two methods of convergence orders 3 and 4, which possess excellent stability properties. Our theoretical results are confirmed with numerical integration of both nonstiff and stiff test problems in this paper.

MSC:

65L04 Numerical methods for stiff equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations

Software:

RODAS; Matlab
Full Text: DOI

References:

[1] Butcher, J. C., Numerical methods for ordinary differential equations, (2008), John Wiley and Sons Chichester · Zbl 1167.65041
[2] Dekker, K.; Verwer, M. P., Stability of Runge-Kutta methods for stiff nonlinear differential equations, (1984), North-Holland Amsterdam · Zbl 0571.65057
[3] Dormand, J. R., Numerical methods for differential equations, (1996), CRC Press · Zbl 0847.65046
[4] Hairer, E.; Lubich, C.; Wanner, G., Geometric numerical integration: structure preserving algorithms for ordinary differential equations, (2002), Springer-Verlag Berlin · Zbl 0994.65135
[5] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving ordinary differential equations I: nonstiff problems, (1993), Springer-Verlag Berlin · Zbl 0789.65048
[6] Hairer, E.; Wanner, G., Solving ordinary differential equations II: stiff and differential-algebraic problems, (1996), Springer-Verlag Berlin · Zbl 0859.65067
[7] Jackiewicz, Z., General linear methods for ordinary differential equations, (2009), John Wiley and Sons Hoboken · Zbl 1211.65095
[8] Sanz-Serna, J. M.; Calvo, M. P., Numerical Hamilton problems, (1994), Chapman and Hall London · Zbl 0816.65042
[9] Shampine, L. F., Numerical solution of ordinary differential equations, (1994), Chapman and Hall New York · Zbl 0832.65063
[10] Kulikov, G. Yu., Cheap global error estimation in some Runge-Kutta pairs, IMA J. Numer. Anal., 33, 1, 136-163, (2013) · Zbl 1271.65119
[11] Weiner, R.; Kulikov, G. Yu., Local and global error estimation and control within explicit two-step peer triples, J. Comput. Appl. Math., 262, 261-270, (2014) · Zbl 1301.65067
[12] Kulikov, G. Yu.; Weiner, R., A singly diagonally implicit two-step peer triple with global error control for stiff ordinary differential equations, SIAM J. Sci. Comput., 37, 3, A1593-A1613, (2015) · Zbl 1433.65122
[13] Weiner, R.; Kulikov, G. Yu.; Beck, S.; Bruder, J., New third- and fourth-order singly diagonally implicit two-step peer triples with local and global error controls for solving stiff ordinary differential equations, J. Comput. Appl. Math., 316, 380-391, (2017) · Zbl 1372.65199
[14] Kulikov, G. Yu.; Weiner, R., Global error estimation and control in linearly-implicit parallel two-step peer W-methods, J. Comput. Appl. Math., 236, 6, 1226-1239, (2011) · Zbl 1269.65075
[15] Aïd, R.; Levacher, L., Numerical investigations on global error estimation for ordinary differential equations, J. Comput. Appl. Math., 82, 21-39, (1997) · Zbl 0887.65096
[16] Shampine, L. F., Global error estimation for stiff {\scode} s, Lecture Notes in Math., 1066, 159-168, (1984) · Zbl 0566.65052
[17] Shampine, L. F., Error estimation and control for {\scode} s, J. Sci. Comput., 25, 3-16, (2005) · Zbl 1203.65122
[18] Shampine, L. F.; Watts, H. A., Global error estimation for ordinary differential equations, ACM Trans. Math. Softw., 2, 172-186, (1976) · Zbl 0328.65041
[19] Skeel, R. D., Thirteen ways to estimate global error, Numer. Math., 48, 1-20, (1986) · Zbl 0562.65050
[20] Skeel, R. D., Global error estimation and the backward differentiation formulas, Appl. Math. Comput., 31, 197-208, (1989) · Zbl 0675.65084
[21] Stetter, H. J., Global error estimation in {\scode}-solvers, (Hinze, J., Numerical Integration of Differential Equations and Large Linear Systems, Proceedings, Bielefeld 1980, Lecture Notes in Mathematics, vol. 968, (1982), Springer-Verlag Berlin), 269-279 · Zbl 0487.00013
[22] Calvo, M.; Higham, D. J.; Montijano, J. I.; Rández, L., Global error estimation with adaptive explicit Runge-Kutta methods, IMA J. Numer. Anal., 16, 47-63, (1996) · Zbl 0840.65087
[23] Calvo, M.; Higham, D. J.; Montijano, J. I.; Rández, L., Stepsize selection for tolerance proportionality in explicit Runge-Kutta codes, Adv. Comput. Math., 7, 361-382, (1997) · Zbl 0891.65097
[24] Calvo, M.; González-Pinto, S.; Montijano, J. I., Global error estimation based on the tolerance proportionality for some adaptive Runge-Kutta codes, J. Comput. Appl. Math., 218, 329-341, (2008) · Zbl 1149.65052
[25] Constantinescu, E., Generalizing global error estimation for ordinary differential equations by using coupled time-stepping methods, J. Comput. Appl. Math., 332, 140-158, (2018) · Zbl 1377.65088
[26] Dormand, J. R.; Duckers, R. R.; Prince, P. J., Global error estimation with Runge-Kutta methods, IMA J. Numer. Anal., 4, 169-184, (1984) · Zbl 0577.65054
[27] Dormand, J. R.; Lockyer, M. A.; McGorrigan, N. E.; Prince, P. J., Global error estimation with Runge-Kutta triples, Comput. Math. Appl., 18, 835-846, (1989) · Zbl 0683.65054
[28] Dormand, J. R.; Prince, P. J., Practical Runge-Kutta processes, SIAM J. Sci. Stat. Comput., 10, 977-989, (1989) · Zbl 0704.65053
[29] Dormand, J. R.; Gilmore, J. P.; Prince, P. J., Globally embedded Runge-Kutta schemes, Ann. Numer. Math., 1, 97-106, (1994) · Zbl 0824.65054
[30] Enright, W. H., Analysis of error control strategies for continuous Runge-Kutta methods, SIAM J. Numer. Anal., 26, 588-599, (1989) · Zbl 0676.65073
[31] Higham, D. J., Global error versus tolerance for explicit Runge-Kutta methods, IMA J. Numer. Anal., 11, 457-480, (1991) · Zbl 0738.65073
[32] Higham, D. J., The tolerance proportionality of adaptive {\scode} solvers, J. Comput. Appl. Math., 45, 227-236, (1993) · Zbl 0780.65050
[33] Kulikov, G. Yu., On quasi-consistent integration by {\scn} ordsieck methods, J. Comput. Appl. Math., 225, 1, 268-287, (2009) · Zbl 1163.65058
[34] Kulikov, G. Yu.; Weiner, R., Doubly quasi-consistent parallel explicit peer methods with built-in global error estimation, J. Comput. Appl. Math., 233, 9, 2351-2364, (2010) · Zbl 1206.65179
[35] Kulikov, G. Yu.; Weiner, R., Variable-stepsize interpolating explicit parallel peer methods with inherent global error control, SIAM J. Sci. Comput., 32, 4, 1695-1723, (2010) · Zbl 1215.65125
[36] Kulikov, G. Yu., Global error control in adaptive {\scn} ordsieck methods, SIAM J. Sci. Comput., 34, 2, A839-A860, (2012) · Zbl 1253.65120
[37] Lang, J.; Verwer, J. G., On global error estimation and control for initial value problems, SIAM J. Sci. Comput., 29, 1460-1475, (2007) · Zbl 1145.65047
[38] Macdougall, T.; Verner, J. H., Global error estimators for order 7, 8 Runge-Kutta pairs, Numer. Algorithms, 31, 215-231, (2002) · Zbl 1014.65066
[39] Makazaga, J.; Murua, A., New Runge-Kutta based schemes for {\scode} s with cheap global error estimation, BIT, 43, 595-610, (2003) · Zbl 1046.65055
[40] Shampine, L. F.; Baca, L. S., Global error estimates for {\scode} s based on extrapolation methods, SIAM J. Sci. Stat. Comput., 6, 1-14, (1985) · Zbl 0578.65077
[41] Tirani, R., A parallel algorithm for the estimation of the global error in Runge-Kutta methods, Numer. Algorithms, 31, 311-318, (2002) · Zbl 1012.65082
[42] Weiner, R.; Kulikov, G. Yu.; Podhaisky, H., Variable-stepsize doubly quasi-consistent parallel explicit peer methods with global error control, Appl. Numer. Math., 62, 10, 1591-1603, (2012) · Zbl 1252.65117
[43] Weiner, R.; Kulikov, G. Yu., Efficient error control in numerical integration of ordinary differential equations and optimal interpolating variable-stepsize peer methods, Comput. Math. Math. Phys., 54, 4, 604-619, (2014) · Zbl 1313.65208
[44] Lancaster, P., Theory of matrices, (1970), Academic Press New York · Zbl 0212.05201
[45] Skeel, R. D., Analysis of fixed-stepsize methods, SIAM J. Numer. Anal., 13, 664-685, (1976) · Zbl 0373.65033
[46] Skeel, R. D.; Jackson, L., Consistency of {\scn} ordsieck methods, SIAM J. Numer. Anal., 14, 910-924, (1977) · Zbl 0383.65047
[47] Weiner, R.; Schmitt, B. A.; Podhaisky, H.; Jebens, S., Superconvergent explicit two-step peer methods, J. Comput. Appl. Math., 223, 753-764, (2009) · Zbl 1166.65037
[48] Kulikov, G. Yu.; Merkulov, A. I.; Shindin, S. K., Asymptotic error estimate for general Newton-type methods and its application to differential equations, Russian J. Numer. Anal. Math. Modelling, 22, 6, 567-590, (2007) · Zbl 1145.65033
[49] Soleimani, B.; Weiner, R., A class of implicit peer methods for stiff systems, J. Comput. Appl. Math., 316, 358-368, (2017) · Zbl 1372.65198
[50] Brugnano, L.; Magherini, C., Recent advances in linear analysis of convergence for splittings for solving {\scode} problems, Appl. Numer. Math., 59, 3-4, 542-557, (2009) · Zbl 1162.65039
[51] Jebens, S.; Knoth, O.; Weiner, R., Explicit multi-step peer methods for the compressible {\sce} uler equations, Mon. Weather Rev., 137, 2380-2392, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.