×

Dynamics of typical Baire-1 functions on a compact \({n}\)-manifold. (English) Zbl 1435.37017

Summary: Let \(M\) be a compact \(n\)-dimensional manifold with \(bB_1\) the set of Baire-1 self-maps of \(M\). For \(f\in bB_1\), let \(\Omega (f)=\{\omega (x,f):x\in M\}\) be the collection of \(\omega \)-limit sets generated by \(f\), and \(\Lambda (f)=\cup _{x\in M}\omega (x,f)\) be the set of \(\omega \)-limit points of \(f\). For a typical \(f \in bB_1\), we show the following: for any \(x\in M\), the \(\omega \)-limit set \(\omega (x,f)\) is contained in the set of points at which \(f\) is continuous, and \(\omega (x,f)\) is an \(\infty \)-adic adding machine; for any \(\varepsilon >0\), there exists a natural number \(K\) such that \(f^k(M)\subset B_{\varepsilon }(\Lambda (f))\) whenever \(k>K\). Moreover, \(f:\Lambda (f)\rightarrow \Lambda (f)\) is a bijection, and \(\Lambda (f)\) is closed. The Hausdorff dimension of \(\Lambda (f)\) is zero, and the collection of \(\omega \)-limit sets \(\Omega (f)\) is closed in the Hausdorff metric space. The function \(f\) is not chaotic in the sense of Li-Yorke, nor in the sense of Devaney. The function \(f\) is one-to-one, and the \(m\)-fold iterate \(f^m\) is an element of \(bB_1\) for all natural numbers \(m\).

MSC:

37B02 Dynamics in general topological spaces
37C45 Dimension theory of smooth dynamical systems
54E52 Baire category, Baire spaces
54C50 Topology of special sets defined by functions
Full Text: DOI

References:

[1] Agronsky, SJ; Bruckner, AM; Laczkovich, M., Dynamics of typical continuous functions, J. Lond. Math. Soc., 40, 227-243 (1989) · Zbl 0657.58016 · doi:10.1112/jlms/s2-40.2.227
[2] Bernardes, NC; Darji, UB, Graph theoretic structure of maps of the Cantor space, Adv. Math., 231, 1655-1680 (2012) · Zbl 1271.37028 · doi:10.1016/j.aim.2012.05.024
[3] Block, L., Coppel, W.: Dynamics in One Dimension. Lecture Notes in Mathematics, vol. 1513. Springer, Berlin (1992) · Zbl 0746.58007 · doi:10.1007/BFb0084762
[4] Block, L.; Keesling, J., A characterization of adding machines, Topol. Appl., 140, 151-161 (2004) · Zbl 1052.37010 · doi:10.1016/j.topol.2003.07.006
[5] Blokh, A., The spectral decomposition for one-dimensional maps, Dyn. Rep., 4, 1-59 (1995) · Zbl 0828.58009
[6] Blokh, A.; Bruckner, AM; Humke, PD; Smital, J., The space of \[\omega\] ω-limit sets of a continuous map of the interval, Trans. Am. Math. Soc., 348, 1357-1372 (1996) · Zbl 0860.54036 · doi:10.1090/S0002-9947-96-01600-5
[7] Bruckner, A.M., Bruckner, J.B., Thomson, B.S.: Real Analysis. Prentice-Hall, Upper Saddle River (1997) · Zbl 0872.26001
[8] Bruckner, AM; Ceder, J., Chaos in terms of the map \[x\rightarrow \omega (x, f)\] x→ω(x,f), Pac. J. Math., 156, 63-96 (1992) · Zbl 0728.58020 · doi:10.2140/pjm.1992.156.63
[9] Bruckner, AM; Petruska, G., Some typical results of bounded Baire-1 functions, Acta Math. Hung., 43, 325-333 (1984) · Zbl 0542.26004 · doi:10.1007/BF01958029
[10] Bruckner, AM; Steele, TH, The Lipschitz structure of continuous self-maps of generic compact sets, J. Math. Anal. Appl., 118, 798-808 (1994) · Zbl 0820.26001 · doi:10.1006/jmaa.1994.1463
[11] Buescu, J.; Stewart, I., Lyapunov stability and adding machines, Ergod. Theory Dyn. Syst., 15, 271-290 (1995) · Zbl 0848.54027 · doi:10.1017/S0143385700008373
[12] D’Aniello, E.; Darji, U.; Steele, TH, Ubiquity of odometers in topological dynamical systems, Topol. Appl., 156, 240-245 (2008) · Zbl 1153.37003 · doi:10.1016/j.topol.2008.07.003
[13] D’Aniello, E.; Steele, TH, Attractors for iterated function schemes on \[[0,1]^N\][0,1]N are exceptional, J. Math. Anal. Appl., 424, 537-541 (2015) · Zbl 1305.28018 · doi:10.1016/j.jmaa.2014.11.032
[14] Fedorenko, V.; Sarkovskii, A.; Smìtal, J., Characterizations of weakly chaotic maps of the interval, Proc. Am. Math. Soc., 110, 141-148 (1990) · Zbl 0728.26008 · doi:10.1090/S0002-9939-1990-1017846-5
[15] Hurewicz, W., Wallman, H.: Dimension Theory. Princeton Mathematical Series, vol. 4. Princeton University Press, Princeton (1941) · Zbl 0060.39808
[16] Lehning, H., Dynamics of typical continuous functions, Proc. Am. Math. Soc., 123, 1703-1707 (1995) · Zbl 0843.58077 · doi:10.1090/S0002-9939-1995-1239798-X
[17] Nitecki, Z.: Topological Dynamics on the Interval. Progress in Mathematics, vol. 21. Birkhauser, Basel (1982) · Zbl 0506.54035
[18] Rogers, C., Functions of the first Baire class, J. Lond. Math. Soc., 37, 535-544 (1988) · Zbl 0687.54014 · doi:10.1112/jlms/s2-37.3.535
[19] Smìtal, J., Chaotic functions with zero topological entropy, Trans. Am. Math. Soc., 297, 269-282 (1986) · Zbl 0639.54029 · doi:10.2307/2000468
[20] Steele, TH, Dynamics of typical Baire-1 functions, Topol. Appl., 225, 1-8 (2017) · Zbl 1365.54031 · doi:10.1016/j.topol.2017.04.006
[21] Steele, TH, The space of \[\omega -\] ω-limit sets for Baire-1 functions on the interval, Topol. Appl., 248, 59-63 (2018) · Zbl 1402.54035 · doi:10.1016/j.topol.2018.08.008
[22] Steele, TH, Dynamics of typical Baire-1 functions on the interval, J. Appl. Anal., 23, 59-64 (2017) · Zbl 1379.54034 · doi:10.1515/jaa-2017-0009
[23] Steele, TH, Continuity and chaos in discrete dynamical systems, Aequ. Math., 71, 300-310 (2006) · Zbl 1092.37023 · doi:10.1007/s00010-005-2813-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.