×

Nevanlinna theory through the Brownian motion. (English) Zbl 1435.32004

In this paper Nevanlinna theory using stochastic calculus is considered. This study is related to the works of B. Davis [Trans. Am. Math. Soc. 213, 353–362 (1975; Zbl 0292.60126)], T. K. Carne [Proc. Lond. Math. Soc. (3) 52, 349–368 (1986; Zbl 0562.60079)] and A. Atsuji [J. Funct. Anal. 132, No. 2, 473–510 (1995; Zbl 0872.32019); Am. Math. Soc. 215, 109–123 (2005); translation from Sūgaku 54, No. 3, 235–248 (2002; Zbl 1082.60069); J. Math. Soc. Japan 60, No. 2, 471–493 (2008; Zbl 1145.32008); J. Math. Soc. Japan 69, No. 2, 477–501 (2017; Zbl 1369.32011)], etc. In particular, the proof of the first and second main theorems of Nevanlinna for meromorphic functions, through probabilistic methods, is given. The proof is founded on the statement of Levy that an analytic map transforms one Brownian motion into a new process which is also a Brownian motion, but modified by changing the time scale along each path. Also, a proof of Cartan’s second main theorem is given (through the Ahlfors’ method) for holomorphic curves into projective spaces using the stochastic calculus. Namely, let \(H_1,\dots,H_q\) be hyperplanes in \(\mathbb{P}^n(\mathbb{C})\) in general position. Let \(f:\mathbb{C}\rightarrow\mathbb{P}^n(\mathbb{C})\) be a linearly non-degenerated holomorphic curve. Then, for any positive \(\varepsilon\) and \(\delta\) \[ \sum\limits_{j=1}^qm_f(r,H_j)+N_W(r,0)\leqslant(n +1+\varepsilon)T_f(r)+\delta\log r\|_E, \] where \(N_W(r,0)\) is the counting function for the zeros of the Wronskian determinant \(W=W(f_0,\dots,f_n)\).

MSC:

32A22 Nevanlinna theory; growth estimates; other inequalities of several complex variables
32H30 Value distribution theory in higher dimensions
60J65 Brownian motion
Full Text: DOI

References:

[1] Atsuji A. Nevanlinna theory via stochastic calculus. J funct anal, 1995, 132: 473-510 · Zbl 0872.32019 · doi:10.1006/jfan.1995.1112
[2] Atsuji A. Brownian motion and value distribution theory of holomorphic maps and harmonic maps. Amer Math Soc Transl Ser 2, 2005, 215: 109-123 · Zbl 1082.60069
[3] Atsuji A. A second main theorem of Nevanlinna theory for meromorphic functions on complete Kähler manifolds. J Math Soc Japan, 2008, 2: 471-493 · Zbl 1145.32008 · doi:10.2969/jmsj/06020471
[4] Atsuji A. Value distribution of leaf wise holomorphic maps on complex laminations by hyperbolic Riemann surfaces. J Math Soc Japan, 2017, 2: 477-501 · Zbl 1369.32011 · doi:10.2969/jmsj/06920477
[5] Bass R F. Probabilistic Techniques in Analysis. New York: Springer, 1995 · Zbl 0817.60001
[6] Carne T K. Brownian motion and Nevanlinna theory. Proc Lond Math Soc (3), 1986, 52: 349-348 · Zbl 0562.60079 · doi:10.1112/plms/s3-52.2.349
[7] Chung K L. Lectures from Markov Process to Brownian Motion. New York: Springer-Verlag, 1982 · Zbl 0503.60073 · doi:10.1007/978-1-4757-1776-1
[8] Davis B. Picard’s theorem and Brownian motion. Trans Amer Math Soc, 1975, 213: 353-361 · Zbl 0292.60126
[9] Fujimoto, H., Value Distribution Theory of the Gauss Map of Minimal Surfaces in ℝm (1993), Wiesbaden · Zbl 1107.32004
[10] Ito K, McKean Jr H P. Diffusion Process and Their Sample Paths. New York: Academic Press, 1965 · Zbl 0127.09503
[11] Le Gall, J. F., Brownian Motion, Martingales, and Stochastic Calculus (2013), New York · Zbl 1291.60002
[12] Revuz D D, Yor M. Continuous Martingales and Brownian Motion. Berlin: Springer, 1991 · Zbl 0731.60002 · doi:10.1007/978-3-662-21726-9
[13] Ru M. Nevanlinna Theory and Its Relation to Diophantine Approximation. Singapore: World Scientific, 2001 · Zbl 0998.30030 · doi:10.1142/4508
[14] Ru M. The recent progress in Nevanlinna theory. J Jiangxi Norm Univ Nat Sci Ed, 2018, 42: 1-11 · Zbl 1413.30124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.