×

Abelian quotients of categories of short exact sequences. (English) Zbl 1435.16003

The author considers abelian factor categories of the category of short exact sequences over an exact category \(\mathscr{C}\). The main theorem states that if \(\mathscr{C}\) has enough projectives, constituting a full subcategory \(\mathscr{P}\), the homotopy category \(\mbox{Ext}(\mathscr{C})\) of short exact sequence is equivalent to the category \(\mathbf{mod}(\mathscr{C}/[\mathscr{P}])\) of finitely presented \(\mathscr{C}/[\mathscr{P}]\)-modules. Dual versions of this fact, and some applications are given. For example, if \(\mathscr{C}\) has enough injectives, with corresponding full subcategory \(\mathscr{I}\), the existence of almost split sequences in \(\mathscr{C}\) is related to a Nakayama functor \(\mathscr{C}/[\mathscr{P}]\to\mathscr{C}/[\mathscr{I}]\).
Reviewer’s remark: The equivalence \(\mathrm{Ext}(\mathscr{C})\approx\mathbf{mod}(\mathscr{C}/[\mathscr{P}])\approx\mathbf{mod}(\mathscr{C}/[\mathscr{I}])\) plays an essential role in the concept of triad (see the formula (26) in the reviewer’s paper [W. Rump, J. Algebra 280, No. 2, 435–462 (2004; Zbl 1079.16008)] and [W. Rump, Commun. Algebra 33, No. 1, 73–95 (2005; Zbl 1081.16027)], proof of Theorem 3). For the existence of almost split sequences, see Zbl 1079.16008, Theorem 5.

MSC:

16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
16G10 Representations of associative Artinian rings
18G05 Projectives and injectives (category-theoretic aspects)
18E10 Abelian categories, Grothendieck categories
18G80 Derived categories, triangulated categories

References:

[1] Asadollahi, J.; Hafezi, R.; Keshavarz, M. H., Categorical resolutions of bounded derived categories (2016), arXiv preprint
[2] Auslander, M., Coherent functors, (Proc. Conf. Categorical Algebra. Proc. Conf. Categorical Algebra, La Jolla, Calif., 1965 (1966), Springer: Springer New York), 189-231 · Zbl 0192.10902
[3] Auslander, M.; Reiten, I., Stable equivalence of dualizing R-varieties, Adv. Math., 12, 3, 306-366 (1974) · Zbl 0285.16027
[4] Auslander, M.; Smalø, S. O., Almost split sequences in subcategories, J. Algebra, 69, 2, 426-454 (1981) · Zbl 0457.16017
[5] Backelin, E.; Jaramillo, O., Auslander-Reiten sequences and t-structures on the homotopy category of an abelian category, J. Algebra, 339, 1, 80-96 (2011) · Zbl 1273.16015
[6] Buan, A.; Marsh, R., From triangulated categories to module categories via localisation, Trans. Am. Math. Soc., 365, 6, 2845-2861 (2013) · Zbl 1327.18022
[7] Buan, A.; Marsh, R., From triangulated categories to module categories via localisation II: calculus of fractions, J. Lond. Math. Soc., 86, 1, 152-170 (2012) · Zbl 1291.16003
[8] Buan, A. B.; Marsh, R.; Reiten, I., Cluster-tilted algebras, Trans. Am. Math. Soc., 359, 1, 323-332 (2007) · Zbl 1123.16009
[9] Buehler, T., Exact categories, Expo. Math., 28, 1, 1-69 (2010) · Zbl 1192.18007
[10] Demonet, L.; Liu, Y., Quotients of exact categories by cluster tilting subcategories as module categories, J. Pure Appl. Algebra, 217, 12, 2282-2297 (2013) · Zbl 1408.18021
[11] Dean, S.; Russell, J., Derived recollements and generalised AR formulas (2016), arXiv preprint · Zbl 1443.18004
[12] Eiríksson, Ö., From submodule categories to the stable Auslander algebra, J. Algebra, 486, 98-118 (2017) · Zbl 1407.16005
[13] Gentle, R., A Study of the Sequence Category (1982), University of British Columbia
[14] Gentle, R., A TTF theory for short exact sequences, Commun. Algebra, 16, 5, 909-924 (1988) · Zbl 0652.18006
[15] Hafezi, R., Auslander-Reiten duality for subcategories (2017), arXiv preprint
[16] Hilton, P. J.; Rees, D., Natural maps of extension functors and a theorem of R. G. Swan, Proc. Camb. Philos. Soc., 57, 489-502 (1961) · Zbl 0122.03101
[17] Iyama, O.; Yoshino, Y., Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math., 172, 1, 117-168 (2008) · Zbl 1140.18007
[18] Keller, B.; Reiten, I., Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math., 211, 1, 123-151 (2007) · Zbl 1128.18007
[19] Krause, H., Derived categories, resolutions, and Brown representability, (Interactions Between Homotopy Theory and Algebra. Interactions Between Homotopy Theory and Algebra, Contemp. Math., vol. 436 (2007)), 101-139 · Zbl 1132.18005
[20] Koenig, S.; Zhu, B., From triangulated categories to Abelian categories: cluster tilting in a general framework, Math. Z., 258, 1, 143-160 (2008) · Zbl 1133.18005
[21] Lenzing, H., Auslander’s work on Artin algebras, (Algebras and Modules, I. Algebras and Modules, I, Trondheim, 1996. Algebras and Modules, I. Algebras and Modules, I, Trondheim, 1996, CMS Conf. Proc., vol. 23 (1998), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 83105 · Zbl 0944.16011
[22] Lenzing, H.; Zuazua, R., Auslander-Reiten duality for abelian categories, Bol. Soc. Mat. Mexicana, 10, 3, 169-177 (2004) · Zbl 1102.16011
[23] Liu, Y., Hearts of twin cotorsion pairs on exact categories, J. Algebra, 394, 245-284 (2013) · Zbl 1319.18002
[24] Liu, S.; Ng, P.; Paquette, C., Almost split sequences and approximations, Algebr. Represent. Theory, 16, 6, 1-19 (2013) · Zbl 1386.18044
[25] Martsinkovsky, A., On direct summands of homological functors on length categories, Appl. Categ. Struct., 24, 4, 421-431 (2016) · Zbl 1349.18006
[26] Nakaoka, H., General heart construction on a triangulated category (I): unifying t-structures and cluster tilting subcategories, Appl. Categ. Struct., 19, 6, 879-899 (2011) · Zbl 1254.18011
[27] Nakaoka, H., General heart construction for twin torsion pairs on triangulated categories, J. Algebra, 374, 195-215 (2013) · Zbl 1309.18011
[28] Neeman, A., Triangulated Categories, Annals of Mathematics Studies, vol. 148 (2001), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0974.18008
[29] Palu, Y., From triangulated categories to module categories via homotopical algebra, preprint
[30] Psaroudakis, C., Homological theory of recollements of Abelian categories, J. Algebra, 398, 63-110 (2014) · Zbl 1314.18016
[31] Reiten, I., The use of almost split sequences in the representation theory of Artin algebras, Represent. Algebr., 944, 29-104 (1982) · Zbl 0486.16018
[32] Ringel, C. M.; Schmidmeier, M., The Auslander-Reiten translation in submodule categories, Trans. Am. Math. Soc., 360, 2, 691-716 (2008) · Zbl 1154.16011
[33] Ringel, C. M.; Schmidmeier, M., Submodule categories of wild representation type, J. Pure Appl. Algebra, 205, 2, 412-422 (2006) · Zbl 1147.16019
[34] Ringel, C. M.; Zhang, P., From submodule categories to preprojective algebras, Math. Z., 278, 1-2, 55-73 (2014) · Zbl 1344.16011
[35] Rump, W., Triads, J. Algebra, 280, 2, 435-462 (2004) · Zbl 1079.16008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.