×

A first-order image denoising model for staircase reduction. (English) Zbl 1434.94018

Summary: In this paper, we consider a total variation-based image denoising model that is able to alleviate the well-known staircasing phenomenon possessed by the Rudin-Osher-Fatemi model [L. I. Rudin et al., Physica D 60, No. 1–4, 259–268 (1992; Zbl 0780.49028)]. To minimize this variational model, we employ augmented Lagrangian method (ALM). Convergence analysis is established for the proposed algorithm. Numerical experiments are presented to demonstrate the features of the proposed model and also show the efficiency of the proposed numerical method.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65K10 Numerical optimization and variational techniques
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 0780.49028
Full Text: DOI

References:

[1] Ambrosio, L., A compactness theorem for a new class of functions of bounded variation, Bollettino della Unione Matematica Italiana, VII, 4, 857-881 (1989) · Zbl 0767.49001
[2] Aubert, G., Kornprobst, P.: Mathematical problems in image processing: partial differential equations and the calculus of variations. Springer Science and Business Media (2006) · Zbl 1110.35001
[3] Aubert, G.; Vese, L., A variational method in image recovery, SIAM J. Numer. Anal., 34, 5, 1948-1979 (1997) · Zbl 0890.35033 · doi:10.1137/S003614299529230X
[4] Brito-Loeza, C.; Chen, K., Multigrid algorithm for high order denoising, SIAM J. Imaging. Sciences, 3, 3, 363-389 (2010) · Zbl 1205.68474 · doi:10.1137/080737903
[5] Bae, E.; Tai, Xc; Zhu, W., Augmented Lagrangian method for an Euler’s elastica based segmentation model that promotes convex contours, Inverse Probl. Imag., 11, 1, 1-23 (2017) · Zbl 1416.94013 · doi:10.3934/ipi.2017001
[6] Beck, A.: First-Order Methods in Optimization, vol. 25, SIAM (2017) · Zbl 1384.65033
[7] Bellettini, G.; Caselles, V.; Novaga, M., The total variation flow in \(\mathbb{R}^n\) ℝn, J. Differ. Equations, 184, 475-525 (2002) · Zbl 1036.35099 · doi:10.1006/jdeq.2001.4150
[8] Bertalmio, M.; Vese, L.; Sapiro, G.; Osher, S., Simultaneous structure and texture image inpainting, IEEE Trans. on Image Process., 12, 8, 882-889 (2003) · doi:10.1109/TIP.2003.815261
[9] Bredies, K.; Kunisch, K.; Pock, T., Total generalized variation, SIAM J. Imaging Sci., 3, 3, 492-526 (2010) · Zbl 1195.49025 · doi:10.1137/090769521
[10] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and \(Trends^{{\circledR }}{\circledR }\)ⓇⓇ in Machine learning, 3, 1, 1-122 (2011) · Zbl 1229.90122
[11] Buttazzo, G.: Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Research Notes in Mathematics 207, Longman Scientific and Technical (1989) · Zbl 0669.49005
[12] Chang, Qs; Che, Zy, An adaptive algorithm for TV-based model of three norms \(L_q, (q=\frac{1}{2},1,2)\) Lq, (q = 1 2, 1, 2) in image restoration, Applied Math and Comput., 329, 251-265 (2018) · Zbl 1427.94008
[13] Chambolle, A.; Pock, T., A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math Imaging Vis., 40, 120-145 (2011) · Zbl 1255.68217 · doi:10.1007/s10851-010-0251-1
[14] Chan, T.; Esedoglu, S., Aspects of total variation regularized l1 function approximation, SIAM J. Appl. Math., 65, 5, 1817-1837 (2005) · Zbl 1096.94004 · doi:10.1137/040604297
[15] Chan, T., Esedoglu, S., Park, F., Yip, M.H.: Recent developments in total variation image restoration. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision. Springer, Berlin (2005)
[16] Chambolle, A.; Lions, Pl, Image recovery via total variation minimization and related problems, Numer. Math., 76, 167-188 (1997) · Zbl 0874.68299 · doi:10.1007/s002110050258
[17] Chan, T.; Shen, J., Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math., 62, 3, 1019-1043 (2001) · Zbl 1050.68157
[18] Chan, T.; Marquina, A.; Mulet, P., High-order total variation-based image restoration, SIAM J. Sci. Comput., 22, 2, 503-516 (2000) · Zbl 0968.68175 · doi:10.1137/S1064827598344169
[19] Chan, T.; Wong, Ck, Total variation blind deconvolution, IEEE Trans. Image Process., 7, 3, 370-375 (1998) · doi:10.1109/83.661187
[20] Goldstein, T.; Osher, S., The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2, 323-343 (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[21] Glowinski, R.; Le Tallec, P., Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics (1989), Philadelphia: SIAM, Philadelphia · Zbl 0698.73001
[22] Huber, Pj, Robust estimation of a location parameter, Ann. Stat., 53, 1, 73-101 (1964) · Zbl 0136.39805 · doi:10.1214/aoms/1177703732
[23] Lysaker, M.; Lundervold, A.; Tai, Xc, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE. Trans. Image Process., 12, 1579-1590 (2003) · Zbl 1286.94020 · doi:10.1109/TIP.2003.819229
[24] Lysaker, M.; Osher, S.; Tai, Xc, Noise removal using smoothed normals and surface fitting, IEEE. Trans. Image Process., 13, 10, 1345-1457 (2004) · Zbl 1286.94022 · doi:10.1109/TIP.2004.834662
[25] Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations, University Lecture Series, Vol 22, Amer. Math. Soc. · Zbl 0987.35003
[26] Mumford, D.; Shah, J., Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42, 577-685 (1989) · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[27] Osher, S.; Burger, M.; Goldfarb, D.; Xu, Jj; Yin, Wt, An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul., 4, 460-489 (2005) · Zbl 1090.94003 · doi:10.1137/040605412
[28] Osher, S.; Sole, A.; Vese, L., Image decomposition and restoration using total variation minimization and the h − 1norm, SIAM Multiscale Model. Simul., 1, 349-370 (2003) · Zbl 1051.49026 · doi:10.1137/S1540345902416247
[29] Rockafellar, Rt, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., 1, 2, 97-116 (1976) · Zbl 0402.90076 · doi:10.1287/moor.1.2.97
[30] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithm, Phys. D, 60, 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[31] Tai, Xc; Hahn, J.; Chung, Gj, A fast algorithm for Euler’s Elastica model using augmented Lagrangian method, SIAM J. Imaging Sciences, 4, 1, 313-344 (2011) · Zbl 1215.68262 · doi:10.1137/100803730
[32] Vese, L., A study in the BV space of a denoising-deblurring variational problem, Appl. Math Optim., 44, 131-161 (2001) · Zbl 1003.35009 · doi:10.1007/s00245-001-0017-7
[33] Wang, Z.; Bovik, Ac; Sheikh, Hr; Simoncelli, Ep, Image quality assessment: from error visibility to structural similarity, IEEE. Trans. Image Process., 13, 4, 600-612 (2004) · doi:10.1109/TIP.2003.819861
[34] Wu, C.; Tai, Xc, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, Vectorial TV, and high order models, SIAM J. Imaging Sciences, 3, 3, 300-339 (2010) · Zbl 1206.90245 · doi:10.1137/090767558
[35] Zhu, W.; Chan, T., Image denoising using mean curvature of image surface, SIAM J. Imaging Sciences, 5, 1, 1-32 (2012) · Zbl 1258.94021 · doi:10.1137/110822268
[36] Zhu, W.; Tai, Xc; Chan, T., Augmented Lagrangian method for a mean curvature based image denoising model, Inverse Probl. Imag., 7, 4, 1409-1432 (2013) · Zbl 1311.94015 · doi:10.3934/ipi.2013.7.1409
[37] Zhu, W.; Tai, Xc; Chan, T., Image segmentation using Euler’s elastica as the regularization, J. Sci. Comput., 57, 2, 414-438 (2013) · Zbl 1282.65037 · doi:10.1007/s10915-013-9710-3
[38] Zhu, W., A numerical study of a mean curvature denoising model using a novel augmented Lagrangian method, Inverse Probl. Imag., 11, 6, 975-996 (2017) · Zbl 1403.94027 · doi:10.3934/ipi.2017045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.