×

Mode-dependent non-fragile observer-based controller design for fractional-order T-S fuzzy systems with Markovian jump via non-PDC scheme. (English) Zbl 1434.93046

Summary: In this paper, controller synthesis problem based on non-fragile observer is investigated for a class of fractional-order nonlinear systems subject to abrupt changes under the fractional-order T-S fuzzy model with Markovian jump. By utilizing non-parallel-distributed-compensation (non-PDC) scheme, the model-dependent observer and the observer-based fuzzy controller are designed under imperfect premise matching to enhance design flexibility. Moreover, the multiplicative random sensor noise over the measurement output is considered. Then, based on the matrix singular value decomposition method (SVD) and the membership-function-shape-dependent (MFSD) analysis approach, new less-conservative sufficient conditions in term of LMIs are derived to guarantee the closed-loop fractional-order fuzzy system robustly stochastically stable. Finally, two examples are provided to illustrate the effectiveness of the new design techniques for fractional-order systems.

MSC:

93C42 Fuzzy control/observation systems
93B53 Observers
93C15 Control/observation systems governed by ordinary differential equations
26A33 Fractional derivatives and integrals
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and Applications of Fractional Differential Equations (2006), Elsevier · Zbl 1092.45003
[2] Sabatier, J.; Aoun, M.; Oustaloup, A., Fractional system identification for lead acid battery state of charge estimation, Signal Process., 86, 2645-2657 (2006) · Zbl 1172.93399
[3] El-Sayed, A. M.A., Fractional-order diffusion-wave equation, Internat. J. Theoret. Phys., 35, 311-322 (1996) · Zbl 0846.35001
[4] Gabano, J. D.; Poinot, T., Fractional modelling and identification of thermal systems, Signal Process., 91, 531-541 (2011) · Zbl 1203.94029
[5] Rossikhin, Y. A.; Shitikova, M. V., Application of fractional operators to the analysis of damped vibrations of viscoelastic single-mass systems, J. Sound Vib., 199, 567-586 (1997) · Zbl 0901.73030
[6] Bagley, R. L.; Calico, R. A., Fractional order state equations for the control of viscoelastically damped structures, J. Guid. Control Dyn., 14, 304-311 (1991)
[7] J. Lin, T. Poinot, J.C. Trigeassou, Modlisation et identification d’ordre non entire d’une machine asynchrone, in: Confrence Internationale Francophone d’Automatique, 2000.; J. Lin, T. Poinot, J.C. Trigeassou, Modlisation et identification d’ordre non entire d’une machine asynchrone, in: Confrence Internationale Francophone d’Automatique, 2000.
[8] Luo, Y.; Chao, H.; Di, L., Lateral directional fractional-order \((P I)^\alpha\) control of a small fixed-wing unmanned aerial vehicles: controller designs and flight tests, IET Control Theory Appl., 5, 2156-2167 (2011)
[9] Caponetto, R.; Dongola, G.; Fortuna, L., (Fractional-Order System: Modelling and Control Applications. Fractional-Order System: Modelling and Control Applications, World Scientific Series on Nonlinear Science Series A (2010), Imperial College Press)
[10] Sabatier, J.; Moze, M.; Farges, C., LMI Stability conditions for fractional-order systems, Comput. Math. Appl., 59, 1549-1609 (2010) · Zbl 1189.34020
[11] Duan, R. R.; Li, J. M., Observer-based non-PDC controller design for T-S fuzzy systems with the fractional-order: \( \alpha : 0 < \alpha < 1\), IET Control Theory Appl., 12, 661-668 (2018)
[12] Wei, Y. H.; Karimi, H. R.; Liang, S., General output feedback stabilization for fractional-order systems: an LMI approach, Abstr. Appl. Anal., 2014, 1-9 (2014) · Zbl 1406.93271
[13] Zhou, S. S.; Li, T., Robust stabilization for delayed discrete-time fuzzy systems via basis-dependent Lyapunov-Krasovskii function, Fuzzy Sets and Systems, 151, 139-153 (2005) · Zbl 1142.93379
[14] Chen, B.; Liu, X. P., Delay-dependent robust \(H_\infty\) control for T-S fuzzy systems with time delay, IEEE Trans. Fuzzy Syst., 13, 544-556 (2005)
[15] Wu, H. N.; Li, H. X., New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay, IEEE Trans. Fuzzy Syst., 15, 482-493 (2007)
[16] Zheng, Y. A.; Nian, Y. B.; Wang, D. J., Controlling fractional order chaotic systems based on Takagi-Sugeno fuzzy model and adaptive adjustment mechanism, Phys. Lett. A, 375, 125-129 (2010) · Zbl 1241.34088
[17] Li, Y. T.; Li, J., Stability analysis of fractional order systems based on T-S fuzzy model with the fractional order \(\alpha : 0 < \alpha < 1\), Nonlinear Dynam., 78, 2909-2919 (2014) · Zbl 1331.93131
[18] Lin, C.; Chen, B.; Wang, Q. G., Static output feedback stabilization for fractional-order systems in T-S fuzzy models, Neurocomputing, 218, 354-358 (2016)
[19] Muthukumar, P.; Balasubramaniam, P.; Ratnavelu, K., T-S Fuzzy predictive control for fractional order dynamical systems and its applications, Nonlinear Dynam., 86, 751-763 (2016) · Zbl 1349.93250
[20] Wang, B.; Xue, J. Y.; Chen, D. Y., Takagi-Sugeno fuzzy control for a wide class of fractional-order chaotic systems with uncertain parameters via linear matrix inequality, J. Vib. Control (2014)
[21] Mirzajani, S.; Aghababa, M. P.; Heydari, A., Adaptive control of nonlinear fractional-order systems using T-S fuzzy method, Int. J. Mach. Learn. Cybern. (2017)
[22] Liu, Y.; Wu, F.; Ban, X., Dynamic output feedback control for continuous-time T-S fuzzy systems using fuzzy Lyapunov functions, IEEE Trans. Fuzzy Syst., 25, 1155-1167 (2017)
[23] Demirci, E.; Ozalp, N., A method for solving differential equations of fractional order, J. Comput. Appl. Math., 236, 2754-2762 (2012) · Zbl 1243.34003
[24] Yuan, C. G.; Mao, X. R., Robust stability and controllability of stochastic differential delay equations with Markovian switching, Automatica, 40, 343-354 (2004) · Zbl 1040.93069
[25] Arrifano, N. S.D.; Oliveira, V. A., Robust \(H_\infty\) fuzzy control approach for a class of Markovian jump nonlinear systems, IEEE Trans. Fuzzy Syst., 14, 738-754 (2006)
[26] Wang, J. W.; Wu, H. N.; Guo, L.; etal, Robust \(H_\infty\) fuzzy control for uncertain nonlinear Markovian jump systems with time-varying delay, Fuzzy Sets and Systems, 212, 41-61 (2013) · Zbl 1285.93060
[27] Xia, Z. L.; Li, J. M.; Li, L. X.J. R., Passivity-based resilient adaptive control for fuzzy stochastic delay systems with Markovian switching, J. Franklin Inst. B, 351, 3818-3836 (2014) · Zbl 1290.93171
[28] Zhu, J. M.; Yu, X. H.; Zhang, T. P., The mean-square stability probability of control of \(H_\infty\) continuous Markovian jump systems, IEEE Trans. Automat. Control, 61, 1918-1924 (2016) · Zbl 1359.93527
[29] Ma, S. D.; Peng, C.; Song, Y., Networked \(H_\infty\) filtering for Markovian jump T-S fuzzy systems with imperfect premise matching, IET Signal Process., 11, 304-312 (2017)
[30] Cheng, J.; Park, J. H.; Zhang, L. X., An asynchronous operation approach to event-triggered control for fuzzy Markovian jump systems with general switching policies, IEEE Trans. Fuzzy Syst., 26, 6-18 (2018)
[31] Chen, L. C.; Zhu, W. Q., Stochastic jump and bifurcation of duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations, Int. J. Non-Linear Mech., 46, 1324-1329 (2011)
[32] H. Sun, W.H. Liu, G.H. Sun, et al. A robust level set method with Markov random field term and fractional-order regularization term, in: 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 2017.; H. Sun, W.H. Liu, G.H. Sun, et al. A robust level set method with Markov random field term and fractional-order regularization term, in: 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 2017.
[33] Kolokoltsov, V. N., Generalized continuous-time random walk, subordination by hitting times, and fractional dynamics, Theory Probab. Appl., 53, 594-609 (2008) · Zbl 1193.60046
[34] Andries, E.; Umarov, S.; Steinberg, S., Monte Carlo random walk simulations based on distributed order differential equations with applications to cell biology, Fract. Calc. Appl. Anal., 9, 351-369 (2006) · Zbl 1132.65114
[35] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[36] X.S. Yang, S. Deb, Cuckoo search via Lévy flights, in: World Congress on Nature & Biologically Inspired Computing, Coimbatore, India, 2009.; X.S. Yang, S. Deb, Cuckoo search via Lévy flights, in: World Congress on Nature & Biologically Inspired Computing, Coimbatore, India, 2009.
[37] Barthelemy, P.; Bertolotti, J.; Wiersma, D. S., A Lévy flight for light, Nature, 453, 495-498 (2008)
[38] Bartumeus, F.; Da Luz, M. G.E.; Viswanathan, G. M., Animal search strategies: A quantitative random-walk analysis, Ecology, 86, 3078-3087 (2005)
[39] Brockmann, D.; Hufnagel, L.; Geisel, T., The scaling laws of human travel, Nature, 439, 462-465 (2006)
[40] Boroujeni, E. A.; Momeni, H. R., Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems, Signal Process., 92, 2365-2370 (2012)
[41] Li, C.; Wang, J.; Lu, J., Observer-based robust stabilisation of a class of non-linear fractional-order uncertain systems: an linear matrix inequalities approach, IET Control Theory Appl., 6, 2757-2764 (2012)
[42] Lan, Y. H.; Zhou, Y., Non-fragile observer-based robust control for a class of fractional-order nonlinear systems, Systems Control Lett., 62, 1143-1150 (2013) · Zbl 1282.93095
[43] Zhong, F. L.; Li, H.; Zhong, S. M., State estimation based on fractional order sliding mode observer method for a class of uncertain fractional-order nonlinear systems, Signal Process., 127, 168-184 (2016)
[44] Keel, L. H.; Bhattacharyya, S. P., Robust, fragile, or optimal?, IEEE Trans. Automat. Control, 42, 1098-1105 (1997) · Zbl 0900.93075
[45] H.K. Lam, F.H.F. Leung, LMI-based stability and performance design of fuzzy control systems: fuzzy models and controllers with different premises, in: IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, 2006.; H.K. Lam, F.H.F. Leung, LMI-based stability and performance design of fuzzy control systems: fuzzy models and controllers with different premises, in: IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, 2006.
[46] Chen, P.; Ma, S. D.; Xie, X. P., Observer-based non-PDC control for networked T-S fuzzy systems with an event-triggered communication, IEEE Trans. Cybern., 47, 2279-2287 (2017)
[47] Zhao, T.; Dian, S. Y., Fuzzy dynamic output feedback \(H_\infty\) control for continuous-time T-S fuzzy systems under imperfect premise matching, ISA Trans., 70, 248-259 (2017)
[48] Li, T.; Zhang, J. F., Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions, Automatica, 45, 1929-1936 (2009) · Zbl 1185.93006
[49] Xu, Y.; Lu, R. Q.; Peng, H., Filtering for fuzzy systems with multiplicative sensor noises and multi-density quantizer, IEEE Trans. Fuzzy Syst., 26, 1011-1022 (2018)
[50] Petersen, I. R., A stabilization algorithm for a class of uncertain linear systems, Systems Control Lett., 8, 351-357 (1987) · Zbl 0618.93056
[51] Costa, O. L.V.; Fragoso, M. D.; Todorov, M. G., Continuous-Time Markov Jump Linear Systems (2012), SpringerVerlag: SpringerVerlag New York, NY, USA
[52] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor – corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29, 3-22 (2002) · Zbl 1009.65049
[53] Li, H. B.; Xiao, L. L.; Ye, J., Strong predictor – corrector Euler-Maruyama methods for stochastic differential equations with Markovian switching, J. Comput. Appl. Math., 237, 5-17 (2013) · Zbl 1259.65006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.