×

Generalized synchronization of regulate seizures dynamics in partial epilepsy with fractional-order derivatives. (English) Zbl 1434.92018

Summary: The dynamical behavior and the synchronization of epileptic seizure dynamics, with fractional-order derivatives, is studied in this paper. Knowing that the dynamical properties of ictal electroencephalogram signal recordings during experiments displays complex nonlinear behaviors, we analyze the system from chaos theory point of view. Based on stability analysis, the system presents three equilibrium points with two of them unstable. Moreover, the system reveals attractor points from the phase portrait analysis. In addition, the largest Lyapunov exponent displays positive values after a given period of time. These observations characterize a chaotic behavior of epileptic seizure dynamics. Therefore, based on the Ge-Yao-Chen partial region stability theory, the synchronization of the system is achieved and simulations prove that the control technique is very efficient. Further studies based on phase synchronization show that we are able to force infected population of neurons by epilepsy into synchronization with uninfected one through a coupling constant. In addition, based on the phase locking value time evolution (phase synchronization) of the system, we realize that fractional-order derivative induces quick synchronization compared to integer order derivative. These results might be very interesting from the medical point of view, because by applying the proposed control method, one may be able to regulate (or reduce) seizure amplitude which, if kindly implemented in practice, will provide excellent therapeutic solution to drug resistant patients with epilepsy.

MSC:

92C50 Medical applications (general)
37N25 Dynamical systems in biology
34A08 Fractional ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models

Software:

Matlab
Full Text: DOI

References:

[1] Niknazar, M.; Mousavi, S.; Motaghi, S.; Dehghani, A.; Vahdat, B. V.; Shamsollahi, M., A unified approach for detection of induced epileptic seizures in rats using ecog signals, Epilepsy Behav, 27, 2, 355-364 (2013)
[2] Campo, AT; Principe, A.; Ley, M.; Rocamora, R.; Deco, G., Degenerate time-dependent network dynamics anticipate seizures in human epileptic brain, PLoS Biol, 16, 4, e2002580 (2018)
[3] 262-262
[4] Chandani, M.; Kumar, A., EEG signal processing for epileptic seizure prediction by using MLPNN and SVM classifiers, J Assoc Inf Sci Technol, 2, 2, 36-41 (2018)
[5] Da Silva, F. L.; Blanes, W.; Kalitzin, S. N.; Parra, J.; Suffczynski, P.; Velis, D. N., Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity, Epilepsia, 44, 72-83 (2003)
[6] Stacey, W.; Le Van Quyen, M.; Mormann, F.; Schulze-Bonhage, A., What is the present-day eeg evidence for a preictal state?, J Epilepsy Res, 97, 3, 243-251 (2011)
[7] Robinson, P.; Rennie, C.; Rowe, D., Dynamics of large-scale brain activity in normal arousal states and epileptic seizures, Phys Rev E, 65, 4, 041924 (2002)
[8] Iasemidis, L. D.; Shiau, D.-S.; Sackellares, J. C.; Pardalos, P. M.; Prasad, A., Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques, IEEE Trans Med Imaging, 51, 3, 493-506 (2004)
[9] Good, L. B.; Sabesan, S.; Marsh, S. T.; Tsakalis, K.; Treiman, D.; Iasemidis, L., Control of synchronization of brain dynamics leads to control of epileptic seizures in rodents, Int J Neural Syst, 19, 3, 173-196 (2009)
[10] Krishnan, G. P.; Bazhenov, M., Ionic dynamics mediate spontaneous termination of seizures and postictal depression state, J Neurosci, 31, 24, 8870-8882 (2011)
[11] Jiruska, P.; De Curtis, M.; Jefferys, J. G.; Schevon, C. A.; Schiff, S. J., Synchronization and desynchronization in epilepsy: controversies and hypotheses, J Physiol, 591, 4, 787-797 (2013)
[12] Roy, D.; Ghosh, A.; Jirsa, V. K., Phase description of spiking neuron networks with global electric and synaptic coupling, Phys Rev E, 83, 5, 051909 (2011)
[13] Guo, D.; Xia, C.; Wu, S.; Zhang, T.; Zhang, Y.; Xia, Y., Stochastic fluctuations of permittivity coupling regulate seizure dynamics in partial epilepsy, Sci China Technol Sci, 60, 7, 995-1002 (2017)
[14] Jirsa, V. K.; Stacey, W. C.; Quilichini, P. P.; Ivanov, A. I.; Bernard, C., On the nature of seizure dynamics, Brain, 137, 8, 2210-2230 (2014)
[15] Proix, T.; Bartolomei, F.; Chauvel, P.; Bernard, C.; Jirsa, V. K., Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy, J Neurosci, 34, 45, 15009-15021 (2014)
[16] El Houssaini, K.; Ivanov, A. I.; Bernard, C.; Jirsa, V. K., Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities, Phys Rev E, 91, 1, 010701 (2015)
[17] Sackellares, J. C.; IASEMIDIS, L. D.; Shiau, D.-S.; GILMORE, R. L.; ROPER, S. N., Epilepsy-when chaos fails, Chaos in Brain?, 112-133 (2000), World Scientific · Zbl 0984.92016
[18] Penfield, W.; Jasper, H., Epilepsy and the functional anatomy of the human brain (1954), APA
[19] Khazipov, R.; Holmes, G. L., Synchronization of kainate-induced epileptic activity via GABAergic inhibition in the superfused rat hippocampus in vivo, J Neurosci, 23, 12, 5337-5341 (2003)
[20] Lytton, W. W.; Sejnowski, T. J., Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons, J Neurophysiol, 66, 3, 1059-1079 (1991)
[21] Bush, P. C.; Douglas, R. J., Synchronization of bursting action potential discharge in a model network of neocortical neurons, Neural Comput, 3, 1, 19-30 (1991)
[22] Tene, A. G.; Kofane, T. C.; Tchoffo, M., Generalized synchronization of the extended Hindmarsh-Rose neuronal model with fractional order derivative, Chaos Solitons Fractals, 118, 311-319 (2019) · Zbl 1442.34013
[23] Tene, A. G.; Kofane, T. C., Chaos generalized synchronization of coupled Mathieu-Van der Pol and coupled Duffing-Van der Pol systems using fractional order-derivative, Chaos Solitons Fractals, 98, 88-100 (2017) · Zbl 1372.34114
[24] Lundstrom, B. N.; Higgs, M. H.; Spain, W. J.; Fairhall, A. L., Fractional differentiation by neocortical pyramidal neurons, Nat Neurosci, 11, 11, 1335 (2008)
[25] Ruan, X.; Wu, A., Multi-quasi-synchronization of coupled fractional-order neural networks with delays via pinning impulsive control, Adv Differ Equ, 2017, 1, 359 (2017) · Zbl 1444.34015
[26] Jun, D.; Guang-jun, Z.; Yong, X.; Hong, Y.; Jue, W., Dynamic behavior analysis of fractional-order Hindmarsh-Rose neuronal model, Cogn Neurodyn, 8, 2, 167-175 (2014)
[27] Kengne, R.; Tchitnga, R.; Tewa, A. K.S.; Litak, G.; Fomethe, A.; Li, C., Fractional-order two-component oscillator: stability and network synchronization using a reduced number of control signals, Eur Phys J B, 91, 12, 304 (2018) · Zbl 1515.34017
[28] Ge, Z.-M.; Li, S.-Y., Chaos generalized synchronization of new Mathieu-Van der Pol systems with new Duffing-Van der Pol systems as functional system by GYC partial region stability theory, Appl Math Model, 35, 11, 5245-5264 (2011) · Zbl 1228.93097
[29] Friis, M.; Kristensen, O.; Boas, J.; Dalby, M.; Deth, S.; Gram, L., Therapeutic experiences with 947 epileptic out-patients in oxcarbazepine treatment, Acta Neurol Scand, 87, 3, 224-227 (1993)
[30] Berkovic, S. F.; McIntosh, A.; Howell, R. A.; Mitchell, A.; Sheffield, L. J.; Hopper, J. L., Familial temporal lobe epilepsy: a common disorder identified in twins, J Child Neurol, 40, 2, 227-235 (1996)
[31] Tene, A. G.; Kofane, T. C., Novel cryptography technique via chaos synchronization of fractional-order derivative systems, Advanced synchronization control and bifurcation of chaotic fractional-order systems, 404-437 (2018), IGI Global · Zbl 1411.34004
[32] Caputo, M., Linear models of dissipation whose Q is almost frequency independent-II, Geophys J Int, 13, 5, 529-539 (1967)
[33] Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y., A new collection of real world applications of fractional calculus in science and engineering, Commun Nonlinear Sci Numer Simul (2018) · Zbl 1509.26005
[34] Lapeyre, G., Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence, Chaos, 12, 3, 688-698 (2002) · Zbl 1080.76526
[35] Pierrehumbert, R. T.; Yang, H., Global chaotic mixing on isentropic surfaces, J Atmospheric Sci, 50, 15, 2462-2480 (1993)
[36] Artale, V.; Boffetta, G.; Celani, A.; Cencini, M.; Vulpiani, A., Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient, Phys Fluids, 9, 11, 3162-3171 (1997) · Zbl 1185.76736
[37] Vallejo, J. C.; Sanjuan, M. A.; Sanjuán, M. A., Predictability of chaotic dynamics (2017), Springer · Zbl 1366.37002
[38] Kuznetsov, N.; Leonov, G.; Mokaev, T.; Prasad, A.; Shrimali, M., Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system, Nonlinear Dyn, 92, 2, 267-285 (2018) · Zbl 1398.37090
[39] Chen, G.; Kuznetsov, N. V.; Leonov, G. A.; Mokaev, T., Hidden attractors on one path: Glukhovsky-Dolzhansky, Lorenz, and Rabinovich systems, IntJBifChaos, 27, 08, 1750115 (2017) · Zbl 1377.34021
[40] Tang, XZ; Boozer, AH, Finite time Lyapunov exponent and advection-diffusion equation, Physica D, 95, 3-4, 283-305 (1996) · Zbl 0899.76343
[41] Danca, M.-F.; Kuznetsov, N., Matlab code for Lyapunov exponents of fractional-order systems, Int J Bif Chaos, 28, 05, 1850067 (2018) · Zbl 1392.34006
[42] Chakravarthy, N.; Tsakalis, K.; Sabesan, S.; Iasemidis, L., Homeostasis of brain dynamics in epilepsy: a feedback control systems perspective of seizures, Ann Biomed Eng, 37, 3, 565-585 (2009)
[43] Lachaux, J.-P.; Rodriguez, E.; Martinerie, J.; Varela, F. J., Measuring phase synchrony in brain signals, Hum Brain Mapp, 8, 4, 194-208 (1999)
[44] Fries, P., Rhythms for cognition: communication through coherence, Neuron, 88, 1, 220-235 (2015)
[45] Garcés, P.; Martín-Buro, M. C.; Maestú, F., Quantifying the test-retest reliability of magnetoencephalography resting-state functional connectivity, Brain Connect, 6, 6, 448-460 (2016)
[46] López, M. E.; Bruña, R.; Aurtenetxe, S.; Pineda-Pardo, J.Á.; Marcos, A.; Arrazola, J., Alpha-band hypersynchronization in progressive mild cognitive impairment: a magnetoencephalography study, J Neurosci, 34, 44, 14551-14559 (2014)
[47] Bruña, R.; Maestú, F.; Pereda, E., Phase locking value revisited: teaching new tricks to an old dog, J Neural Eng, 15, 5, 56011 (2018)
[48] Weule, J., Detection of n: m phase locking from noisy data: application to magnetoencephalography, Phys Rev Lett, 81, 15, 3291-3294 (1998)
[49] Bruns, A., Fourier-, Hilbert-and wavelet-based signal analysis: are they really different approaches?, J Neurosci Methods, 137, 2, 321-332 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.