×

Ulam-Hyers stability results for fixed point problems via \(\alpha\)-\(\psi\)-contractive mapping in \((b)\)-metric space. (English) Zbl 1434.54013

Summary: We will investigate some existence, uniqueness, and Ulam-Hyers stability results for fixed point problems via \(\alpha\)-\(\psi\)-contractive mapping of type-\((b)\) in the framework of \(b\)-metric spaces. The presented theorems extend, generalize, and unify several results in the literature, involving the results of B. Samet et al. [Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 4, 2154–2165 (2012; Zbl 1242.54027)].

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces
39B82 Stability, separation, extension, and related topics for functional equations

Citations:

Zbl 1242.54027

References:

[1] Samet, B.; Vetro, C.; Vetro, P., Fixed point theorems for \(\alpha-\psi \)-contractive type mappings, Nonlinear Analysis. Theory, Methods & Applications, 75, 4, 2154-2165 (2012) · Zbl 1242.54027 · doi:10.1016/j.na.2011.10.014
[2] Czerwik, S., Nonlinear set-valued contraction mappings in \(b\)-metric spaces, Atti del Seminario Matematico e Fisico dell’Università di Modena, 46, 2, 263-276 (1998) · Zbl 0920.47050
[3] Czerwik, S., Contraction mappings in \(b\)-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1, 5-11 (1993) · Zbl 0849.54036
[4] Bourbaki, N., Topologie Générale (1974), Paris, France: Herman, Paris, France
[5] Bakhtin, I. A., The contraction mapping principle in quasimetric spaces, Functional Analysis, 30, 26-37 (1989) · Zbl 0748.47048
[6] Heinonen, J., Lectures on Analysis on Metric Spaces, x+140 (2001), New York, NY, USA: Springer, New York, NY, USA · Zbl 0985.46008 · doi:10.1007/978-1-4613-0131-8
[7] Boriceanu, M.; Petruşel, A.; Rus, I. A., Fixed point theorems for some multivalued generalized contractions in \(b\)-metric spaces, International Journal of Mathematics and Statistics, 6, 10, 65-76 (2010)
[8] Boriceanu, M., Strict fixed point theorems for multivalued operators in \(b\)-metric spaces, International Journal of Modern Mathematics, 4, 3, 285-301 (2009) · Zbl 1221.54051
[9] Boriceanu, M., Fixed point theory for multivalued generalized contraction on a set with two \(b\)-metrics, Mathematica, 54, 3, 3-14 (2009) · Zbl 1240.54118
[10] Bota, M., Dynamical Aspects in the Theory of Multivalued Operators (2010), Cluj University Press
[11] Aydi, H.; Bota, M.-F.; Karapınar, E.; Mitrović, S., A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory and Applications, 2012, article 88 (2012) · Zbl 1457.54032 · doi:10.1186/1687-1812-2012-88
[12] Aydi, H.; Bota, M.-F.; Karapinar, E.; Moradi, S., A common fixed point for weak \(\phi \)-contractions on \(b\)-metric spaces, Fixed Point Theory, 13, 2, 337-346 (2012) · Zbl 1297.54080
[13] Ulam, S. M., Problems in Modern Mathematics, xvii+150 (1964), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0137.24201
[14] Hyers, D. H., On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, 27, 222-224 (1941) · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[15] Bota-Boriceanu, M. F.; Petruşel, A., Ulam-Hyers stability for operatorial equations, Analele Stiintifice ale Universitatii, 57, 1, 65-74 (2011) · Zbl 1265.54158 · doi:10.2478/v10157-011-0003-6
[16] Lazăr, V. L., Ulam-Hyers stability for partial differential inclusions, Electronic Journal of Qualitative Theory of Differential Equations, 21, 1-19 (2012) · Zbl 1340.54065
[17] Rus, I. A., The theory of a metrical fixed point theoremml: theoretical and applicative relevances, Fixed Point Theory, 9, 2, 541-559 (2008) · Zbl 1172.54030
[18] Rus, I. A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10, 2, 305-320 (2009) · Zbl 1204.47071
[19] Tişe, F. A.; Tişe, I. C., Ulam-Hyers-Rassias stability for set integral equations, Fixed Point Theory, 13, 2, 659-667 (2012) · Zbl 1282.45004
[20] Brzdęk, J.; Chudziak, J.; Páles, Z., A fixed point approach to stability of functional equations, Nonlinear Analysis. Theory, Methods & Applications, 74, 17, 6728-6732 (2011) · Zbl 1236.39022 · doi:10.1016/j.na.2011.06.052
[21] Brzdęk, J.; Ciepliński, K., A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Analysis. Theory, Methods & Applications, 74, 18, 6861-6867 (2011) · Zbl 1237.39022 · doi:10.1016/j.na.2011.06.050
[22] Brzdęk, J.; Ciepliński, K., A fixed point theorem and the Hyers-Ulam stability in non-Archimedean spaces, Journal of Mathematical Analysis and Applications, 400, 1, 68-75 (2013) · Zbl 1286.47049 · doi:10.1016/j.jmaa.2012.11.011
[23] Cadariu, L.; Gavruta, L.; Gavruta, P., Fixed points and generalized Hyers-Ulam stability, Abstract and Applied Analysis, 2012 (2012) · Zbl 1252.39030 · doi:10.1155/2012/712743
[24] Berinde, V., Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory. Seminar on Fixed Point Theory, Preprint 3, 93, 3-9 (1993), Cluj-Napoca, Romania: Babeş-Bolyai University, Cluj-Napoca, Romania · Zbl 0878.54035
[25] Rus, I. A., Generalized Contractions and Applications, 198 (2001), Cluj-Napoca, Romania: Cluj University Press, Cluj-Napoca, Romania · Zbl 0968.54029
[26] Berinde, V., Contractii Generalizate şi Aplicatii, 2, viii+159 (1997), Baia Mare, Romania: Editura Cub Press, Baia Mare, Romania · Zbl 0885.47022
[27] Berinde, V., Sequences of operators and fixed points in quasimetric spaces, Mathematica, 41, 4, 23-27 (1996) · Zbl 1005.54501
[28] Hussain, N.; Kadelburg, Z.; Radenović, S.; Al-Solamy, F., Comparison functions and fixed point results in partial metric spaces, Abstract and Applied Analysis, 2012 (2012) · Zbl 1242.54023
[29] Petru, T. P.; Petruşel, A.; Yao, J.-C., Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese Journal of Mathematics, 15, 5, 2195-2212 (2011) · Zbl 1246.54049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.