×

Optimization on the real symplectic group. (English) Zbl 1434.49026

Summary: We regard the real symplectic group \(Sp(2n,{{\mathbb{R}}})\) as a constraint submanifold of the \(2n\times 2n\) real matrices \({\mathcal{M}}_{2n}({{\mathbb{R}}})\) endowed with the Euclidean (Frobenius) metric, respectively as a submanifold of the general linear group \(Gl(2n,{{\mathbb{R}}})\) endowed with the (left) invariant metric. For a cost function that defines an optimization problem on the real symplectic group we give a necessary and sufficient condition for critical points and we apply this condition to the particular case of a least square cost function. In order to characterize the critical points we give a formula for the Hessian of a cost function defined on the real symplectic group, with respect to both considered metrics. For a generalized Brockett cost function we present a necessary condition and a sufficient condition for local minimum. We construct a retraction map that allows us to detail the steepest descent and embedded Newton algorithms for solving an optimization problem on the real symplectic group.

MSC:

49M15 Newton-type methods
15A99 Basic linear algebra
53C30 Differential geometry of homogeneous manifolds

References:

[1] Absil, P-A; Mahony, R.; Sepulchre, R., Optimization Algorithms on Matrix Manifolds (2008), Princeton: Princeton University Press, Princeton · Zbl 1147.65043
[2] Absil, P-A; Vandereycken, B.; Vandewalle, S., A Riemannian geometry with complete geodesics for the set of positive semidefinite matrices of fixed rank, IMA J. Numer. Anal., 33, 481-514 (2013) · Zbl 1271.53039 · doi:10.1093/imanum/drs006
[3] Arnol’D, Vi; Novikov, Sp, Dynamical Systems IV: Symplectic Geometry and its Applications (1990), Berlin: Springer, Berlin · Zbl 0778.00008
[4] Birtea, P.; Comănescu, D., Geometric dissipation for dynamical systems, Commun. Math. Phys., 316, 375-394 (2012) · Zbl 1300.37020 · doi:10.1007/s00220-012-1589-6
[5] Birtea, P.; Comănescu, D., Hessian operators on constraint manifolds, J. Nonlinear Sci., 25, 1285-1305 (2015) · Zbl 1329.53025 · doi:10.1007/s00332-015-9256-7
[6] Birtea, P.; Comănescu, D., Newton algorithm on constraint manifolds and the 5-electron Thomson problem, J. Optim. Theor. Appl., 173, 563-583 (2017) · Zbl 1370.49023 · doi:10.1007/s10957-016-1049-0
[7] Brockett, Rw, Least squares matching problems, Linear Algebra Appl., 122-124, 761-777 (1989) · Zbl 0676.90055 · doi:10.1016/0024-3795(89)90675-7
[8] De Gosson, Ma; Luef, F., Metaplectic group, symplectic Cayley transform, and fractional Fourier transforms, J. Math. Anal. Appl., 416, 947-968 (2014) · Zbl 1322.43003 · doi:10.1016/j.jmaa.2014.03.013
[9] Dolcetti, A.; Perticci, D., Some differential properties of \(GL_n({\mathbb{R}})\) with the trace metric, Rivista di Matematica della Università di Parma, 6, 267-286 (2015) · Zbl 1345.53073
[10] Dragt, A.; Neri, F.; Rangarajan, G.; Douglas, Dr; Healy, Lm; Ryne, Rd, Lie algebraic treatment of linear and nonlinear beam dynamics, Ann. Rev. Nucl. Part. Sci., 38, 455-496 (1988) · doi:10.1146/annurev.ns.38.120188.002323
[11] Fackler, P.L.: Notes on matrix calculus. http://www2.stat.duke.edu/ zo2/shared/resources/matrixc1.pdf (2005). Accessed 18 Nov 2019
[12] Fan, J.; Nie, P., Quadratic problems over the Stiefel manifold, Oper. Res. Lett., 34, 135-141 (2006) · doi:10.1016/j.orl.2005.04.005
[13] Fiori, S., Solving minimal-distance problems over the manifold of real symplectic matrices, SIAM J. Matrix Anal. Appl., 32, 938-968 (2011) · Zbl 1234.65032 · doi:10.1137/100817115
[14] Machado, L.M., Silva Leite, F.: Optimization on Quadratic Matrix Lie Groups. Pré-Publicações do Departamento de Matemática, University of Coimbra. https://core.ac.uk/download/pdf/144016872.pdf (2002)
[15] Mahony, R.; Manton, J., The geometry of the Newton method on noncompact Lie groups, J. Glob. Optim., 23, 309-327 (2002) · Zbl 1019.22005 · doi:10.1023/A:1016586831090
[16] Marsden, Je; Ratiu, Ts, Introduction to Mechanics and Symmetry (2002), Berlin: Springer, Berlin
[17] Petersen, K.B., Pedersen, M.S.: The matrix cookbook. Technical University of Denmark. http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf (2012)
[18] Wang, J.; Sun, H.; Fiori, S., A Riemannian-steepest-descent approach for optimization on the real symplectic group, Math. Methods Appl. Sci., 41, 4273-4286 (2018) · Zbl 1415.65144 · doi:10.1002/mma.4890
[19] Wu, R-B; Chakrabarti, R.; Rabitz, H., Optimal control theory for continuous-variable quantum gates, Phys. Rev. A, 77, 052303 (2008) · doi:10.1103/PhysRevA.77.052303
[20] Wu, R-B; Chakrabarti, R.; Rabitz, H., Critical landscape topology for optimization on the symplectic group, J. Optim. Theory Appl., 145, 387-406 (2010) · Zbl 1201.90200 · doi:10.1007/s10957-009-9641-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.