×

Smooth measures and capacities associated with nonlocal parabolic operators. (English) Zbl 1434.31006

Summary: We consider a family \(\{L_t,\ t\in [0,T]\}\) of closed operators generated by a family of regular (non-symmetric) Dirichlet forms \(\{(B^{(t)}, V), t \in [0,T]\}\) on \(L^2(E;m)\). We show that a bounded (signed) measure \(\mu\) on \((0,T) \times E\) is smooth, i.e. charges no set of zero parabolic capacity associated with \(\frac{\partial}{\partial t} + L_t\), if and only if \(\mu\) is of the form \(\mu = f \cdot m_1 + g_1 + \partial_t g_2\) with \(f \in L^1((0,T)\times E; \text{d}t \otimes m)\), \(g_1 \in L^2(0,T; V')\), \(g_2 \in L^2(0,T; V)\). We apply this decomposition to the study of the structure of additive functionals in the Revuz correspondence with smooth measures. As a by-product, we also give some existence and uniqueness results for solutions of semilinear equations involving the operator \(\frac{\partial}{\partial t} + L_t\) and a functional from the dual \(\mathcal{W}'\) of the space \(\mathcal{W} = \{u \in L^2(0,T; V) : \partial_t u \in L^2(0,T; V')\}\) on the right-hand side of the equation.

MSC:

31C25 Dirichlet forms
35K58 Semilinear parabolic equations
31C15 Potentials and capacities on other spaces
60J45 Probabilistic potential theory

References:

[1] Beznea, L.; Cîmpean, I., Quasimartingales associated to Markov processes, Trans. Amer. Math. Soc., 370, 7761-7787 (2018) · Zbl 1425.60068 · doi:10.1090/tran/7214
[2] Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Academic Press, New York and London 1968. · Zbl 0169.49204
[3] Boccardo, L.; Gallouët, T.; Orsina, L., Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13, 539-551 (1996) · Zbl 0857.35126 · doi:10.1016/S0294-1449(16)30113-5
[4] Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Springer, New York, 2011. · Zbl 1220.46002
[5] Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. North-Holland Publishing Co., Amsterdam, 1978. · Zbl 0494.60001
[6] Droniou, J.; Porretta, A.; Prignet, A., Parabolic Capacity and Soft Measures for Nonlinear Equations, Potential Anal., 19, 99-161 (2003) · Zbl 1017.35040 · doi:10.1023/A:1023248531928
[7] Fukushima, M.: On semi-martingale characterizations of functionals of symmetric Markov processes. Electron. J. Probab. 4 (1999), no. 18, 32 pp. · Zbl 0936.60067
[8] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. Second revised and extended edition. Walter de Gruyter, Berlin 2011. · Zbl 1227.31001
[9] Fukushima, M.; Sato, K.; Taniguchi, S., On the closable parts of pre-Dirichlet forms and the fine supports of underlying measures, Osaka J. Math., 28, 517-535 (1991) · Zbl 0756.60071
[10] Getoor, RK; Sharpe, MJ, Naturality, standardness, and weak duality for Markov processes, Z. Wahrsch. Verw. Gebiete, 67, 1-62 (1984) · Zbl 0553.60070 · doi:10.1007/BF00534082
[11] Klimsiak, T., Reflected BSDEs on filtered probability spaces, Stochastic Process. Appl., 125, 4204-4241 (2015) · Zbl 1323.60079 · doi:10.1016/j.spa.2015.06.006
[12] Klimsiak, T., Semi-Dirichlet forms, Feynman-Kac functionals and the Cauchy problem for semilinear parabolic equations, J. Funct. Anal., 268, 1205-1240 (2015) · Zbl 1316.35157 · doi:10.1016/j.jfa.2014.11.013
[13] Klimsiak, T., Obstacle problem for evolution equations involving measure data and operator corresponding to semi-Dirichlet form, J. Evol. Equ., 18, 681-713 (2018) · Zbl 1394.35257 · doi:10.1007/s00028-017-0416-0
[14] Klimsiak, T.; Rozkosz, A., Renormalized solutions of semilinear equations involving measure data and operator corresponding to Dirichlet form, NoDEA Nonlinear Differential Equations Appl., 22, 1911-1934 (2015) · Zbl 1328.35263 · doi:10.1007/s00030-015-0350-1
[15] Klimsiak, T.; Rozkosz, A., On the structure of bounded smooth measures associated with a quasi-regular Dirichlet form, Bull. Polish Acad. Sci. Math., 65, 45-56 (2017) · Zbl 1375.31014 · doi:10.4064/ba8108-7-2017
[16] Klimsiak, T., Rozkosz, A.: On the structure of diffuse measures for parabolic capacities. arXiv:1808.06422. · Zbl 1420.35144
[17] Lions, J.-L.: Quelques Méthodes de Résolutions des Problèmes aux Limites Non Linéaires. Dunod, Gauthier Villars, Paris 1969. · Zbl 0189.40603
[18] Meyer, P-A, Fonctionnelles multiplicatives et additives de Markov, Ann. Inst. Fourier, 12, 125-230 (1962) · Zbl 0138.40802 · doi:10.5802/aif.121
[19] Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer-Verlag, Berlin 1992. · Zbl 0826.31001 · doi:10.1007/978-3-642-77739-4
[20] Oshima, Y., On a construction of Markov processes associated with time dependent Dirichlet spaces, Forum Math., 4, 395-415 (1992) · Zbl 0759.60081 · doi:10.1515/form.1992.4.395
[21] Oshima, Y., Some properties of Markov processes associated with time dependent Dirichlet forms, Osaka J. Math., 29, 103-127 (1992) · Zbl 0759.60082
[22] Oshima, Y., Time-dependent Dirichlet forms and related stochastic calculus, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7, 281-316 (2004) · Zbl 1078.60060 · doi:10.1142/S021902570400158X
[23] Oshima, Y.: Semi-Dirichlet Forms and Markov Processes. Walter de Gruyter, Berlin 2013. · Zbl 1286.60002 · doi:10.1515/9783110302066
[24] Petitta, F., Renormalized solutions of nonlinear parabolic equations with general measure data, Ann. Mat. Pura Appl., 187, 563-604 (2008) · Zbl 1150.35060 · doi:10.1007/s10231-007-0057-y
[25] Petitta, F.; Ponce, AC; Porretta, A., Diffuse measures and nonlinear parabolic equations, J. Evol. Equ., 11, 861-905 (2011) · Zbl 1243.35108 · doi:10.1007/s00028-011-0115-1
[26] Pierre, M., Problèmes d’évolution avec contraintes unilatérales et potentiel paraboliques, Comm. Partial Differential Equations, 4, 1149-1197 (1979) · Zbl 0426.31005 · doi:10.1080/03605307908820124
[27] Pierre, M.: Représentant précis d’un potentiel parabolique. Séminaire de Théorie du Potentiel, Paris, No. 5, Lecture Notes in Math. 814 (1980) 186-228. · Zbl 0463.31007
[28] Pierre, M., Parabolic capacity and Sobolev spaces, SIAM J. Math. Anal., 14, 522-533 (1983) · Zbl 0529.35030 · doi:10.1137/0514044
[29] Revuz, D., Mesures associees aux fonctionnelles additives de Markov I, Trans. Amer. Math. Soc., 148, 501-531 (1970) · Zbl 0266.60053
[30] Stannat, W., Dirichlet forms and Markov processes: a generalized framework including both elliptic and parabolic cases, Potential Anal., 8, 21-60 (1998) · Zbl 0903.60061 · doi:10.1023/A:1017995903763
[31] Stannat, Wilhelm, The theory of generalized Dirichlet forms and its applications in analysis and stochastics, Memoirs of the American Mathematical Society, 142, 0-0 (1999) · Zbl 1230.60006 · doi:10.1090/memo/0678
[32] Trutnau, G., Stochastic calculus of generalized Dirichlet forms and applications to stochastic differential equations in infinite dimensions, Osaka J. Math., 37, 315-343 (2000) · Zbl 0963.60071
[33] Trutnau, G.: Analytic properties of smooth measures in the non-sectorial case, (Stochastic Analysis of Jump processes and Related Topics), Kyoto University, Departamental Bulletin Paper (2010), 1672: pp. 45-62, http://hdl.handle.net/2433/141183.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.