×

Asymptotic order of the geometric mean error for self-affine measures on Bedford-McMullen carpets. (English) Zbl 1434.28010

Summary: Let \(E\) be a Bedford-McMullen carpet associated with a set of affine mappings \(\{ f_{i j} \}_{( i , j ) \in G}\) and let \(\mu\) be the self-affine measure associated with \(\{ f_{i j} \}_{( i , j ) \in G}\) and a probability vector \(( p_{i j} )_{( i , j ) \in G}\). We study the asymptotics of the geometric mean error in the quantization for \(\mu \). Let \(s_0\) be the Hausdorff dimension for \(\mu \). Assuming a separation condition for \(\{ f_{i j} \}_{( i , j ) \in G}\), we prove that the \(k\) th geometric error for \(\mu\) is of the same order as \(k^{- 1 / s_0}\).

MSC:

28A78 Hausdorff and packing measures

References:

[1] Gray, R. and Neuhoff, D., Quantization, IEEE Trans. Inform. Theory44 (1998) 2325-2383. · Zbl 1016.94016
[2] P. L. Zador, Development and evaluation of procedures for quantizing multivariate distributions, Ph.D. thesis, Stanford University (1964).
[3] Graf, S. and Luschgy, H., Foundations of Quantization for Probability Distributions, Vol. 1730 (Springer, New York, 2000). · Zbl 0951.60003
[4] Graf, S. and Luschgy, H., Quantization for probabilitiy measures with respect to the geometric mean error, Math. Proc. Cambridge Philos. Soc.136 (2004) 687-717. · Zbl 1049.60014
[5] Dai, M. and Tan, X., Quantization dimension of random self-similar measures, J. Math. Anal. Appl.362 (2010) 471-475. · Zbl 1227.60065
[6] Graf, S. and Luschgy, H., Asymptotics of the quantization errors for self-similar probabilities, Real Anal. Exchange26 (2000) 795-810. · Zbl 1029.28003
[7] Graf, S. and Luschgy, H., The point density measure in the quantization of self-similar probabilities, Math. Proc. Cambridge Philos. Soc.138 (2005) 513-531. · Zbl 1084.28006
[8] Graf, S., Luschgy, H. and Pagès, G., The local quantization behavior of absolutely continuous probabilities, Ann. Probab.40 (2012) 1795-1828. · Zbl 1260.60032
[9] Kesseböhmer, M. and Zhu, S., On the quantization for self-affine measures on Bedford-McMullen carpets, Math. Z.283 (2016) 39-58. · Zbl 1342.28009
[10] Kreitmeier, W., Optimal quantization for dyadic homogeneous Cantor distributions, Math. Nachr.281 (2008) 1307-1327. · Zbl 1211.28004
[11] Lindsay, L. J. and Mauldin, R. D., Quantization dimension for conformal iterated function systems, Nonlinearity15 (2002) 189-199. · Zbl 0991.60002
[12] Pötzelberger, K., The quantization dimension of distributions, Math. Proc. Cambridge Philos. Soc.131 (2001) 507-519. · Zbl 1026.28003
[13] Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J.30 (1981) 713-747. · Zbl 0598.28011
[14] T. Bedford, Crinkly curves, Markov partitions and box dimensions in self-similar sets, Ph.D. thesis, University of Warwick (1984).
[15] Falconer, K. J., Generalized dimensions of measures on almost self-affine sets, Nonlinearity23 (2010) 1047-1069. · Zbl 1196.28015
[16] Feng, D. J. and Wang, Y., A class of self-affine sets and self-affine measures. J. Fourier Anal. Appl.11 (2005) 107-124. · Zbl 1091.28005
[17] Jordan, T. and Rams, M., Multifractal analysis for Bedford-McMullen carpets, Math. Proc. Cambridge Philos. Soc.150 (2011) 147-156. · Zbl 1206.28012
[18] King, J. F., The singularity spectrum for general Sierpiński carpets, Adv. Math.116 (1995) 1-11. · Zbl 0845.28007
[19] McMullen, C., The Hausdorff dimension of general Sierpiński carpetes, Nagoya Math. J.96 (1984) 1-9. · Zbl 0539.28003
[20] Peres, Y., The self-affine carpetes of McMullen and Bedford have infinite Hausdorff measure, Math. Proc. Cambridge Philos. Soc.116 (1994) 513-526. · Zbl 0811.28005
[21] Wen, Z. Y., Mathematical Foundations of Fractal Geometry (Shanghai Scientific and Technological Education Publishing House, Shanghai, 2000).
[22] Zhu, S., A note on the quantization for probability measures with respect to the geometric mean error, Monatsh. Math.167 (2012) 291-305. · Zbl 1270.28010
[23] Zhu, S., Asymptotic order of the quantization errors for a class of self-affine measures, Proc. Amer. Math. Soc.146 (2018) 637-651. · Zbl 1379.28012
[24] Kesseböhmer, M. and Zhu, S., Some recent developments in the quantization for probability measures, in Fractal Geometry and Stochastics V, eds. Bandt, C., Falconer, K., Zäle, M., , Vol. 70 (Springer, Switzerland, 2015), pp. 105-120. · Zbl 1338.28002
[25] Falconer, K. J., Fractal Geometry: Mathematical Foundations and Applications (John Wiley & Sons, USA, 2004). · Zbl 1060.28005
[26] Zhu, S., The quantization for self-conformal measures with respect to the geometric mean error, Nonlinearity23 (2010) 2849-2966. · Zbl 1202.28005
[27] Zhu, S., Asymptotics of the geometric mean error in the quantization for product measures on Moran sets, J. Math. Anal. Appl.403 (2013) 252-261. · Zbl 1282.28008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.