×

Improving parameters precision of quantum estimation by homodyne-based feedback control. (English) Zbl 1433.81050

Summary: In this paper, we investigate the improvement of quantum Fisher information (QFI) of a single-qubit system coupled to a common reservoir by homodyne-based feedback control. It is shown that by controlling the polar parameter of the initial quantum state, one may improve the quantum Fisher information of the estimated parameters. By comparing the effects of different feedback control types on QFI, we find that under the homodyne-based feedback control, when the feedback Hamiltonian is selected as \(\lambda \sigma_x \), the estimation precision of feedback parameters and dissipation coefficient can be improved.

MSC:

81P50 Quantum state estimation, approximate cloning
81Q93 Quantum control
93B52 Feedback control
81P17 Quantum entropies
Full Text: DOI

References:

[1] Giovannetti, V.; Lloyd, S.; Maccone, L., Quantum metrology, Phys. Rev. Lett., 96, 1, 010401 (2006) · doi:10.1103/PhysRevLett.96.010401
[2] Bollinger, J. J. .; Itano, Wayne M.; Wineland, D. J.; Heinzen, D. J., Optimal frequency measurements with maximally correlated states, Physical Review A, 54, 6, R4649-R4652 (1996) · doi:10.1103/PhysRevA.54.R4649
[3] Huelga, Sf; Macchiavello, C.; Pellizzari, T.; Ekert, Ak; Plenio, Mb; Cirac, Ji, Improvement of frequency standards with quantum entanglement, Phys. Rev. Lett., 79, 20, 3865-3868 (1997) · doi:10.1103/PhysRevLett.79.3865
[4] Taylor, Jm; Cappellaro, P.; Childress, L.; Jiang, L.; Budker, D.; Hemmer, Pr; Yacoby, A.; Walsworth, R.; Lukin, Md, High-sensitivity diamond magnetometer with nanoscale resolution, Nat. Phys., 4, 810-816 (2008) · doi:10.1038/nphys1075
[5] Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A. 93(1), 012307 (2016)
[6] Fisher, Ra, Theory of statistical estimation, Math. Proc. Camb. Philos. Soc., 22, 5, 700-725 (1925) · JFM 51.0385.01 · doi:10.1017/S0305004100009580
[7] Zheng, Q., Yao, Y., Li, Y.: Optimal quantum channel estimation of two interacting qubit subject to decoherence. Eur. Phys. J. D. 68, 170 (2014)
[8] Ozaydin, F.: Quantum Fisher information of W States in Decoherence channels. Phys. Lett. A. 378(43), 3161-3164 (2014) · Zbl 1343.81053
[9] Li, Y.L., Xiao, X., Yao, Y.: Classical-driving-enhanced parameter-estimation precision of a non-Markovian dissipative two-state system. Phys. Rev. A. 91(5), 052105 (2015)
[10] Stefanatos, D., Optimal shortcuts to adiabaticity for a quantum piston, Automatica, 49, 10, 3079-3083 (2013) · Zbl 1320.81064 · doi:10.1016/j.automatica.2013.07.020
[11] Dong, D.; Petersen, Ir, Sliding mode control of quantum systems, New J. Phys., 11, 10, 105033 (2009) · doi:10.1088/1367-2630/11/10/105033
[12] Ji, Yh; Hu, Jj; Ke, Q., Lyapunov-based states transfer for open system with superconducting qubits, Int. J. Control. Autom. Syst., 16, 1, 55-61 (2018) · doi:10.1007/s12555-016-0069-8
[13] Kuang, S.; Cong, S., Lyapunov control methods of closed quantum systems, Automatica, 44, 1, 98-108 (2008) · Zbl 1138.93040 · doi:10.1016/j.automatica.2007.05.013
[14] James, M.R.: Risk-sensitive optimal control of quantum systems. Phys. Rev. A. 69(3), 032108 (2004)
[15] Gammelmark, S., Molmer, K.: Bayesian parameter inference from continuously monitored quantum systems. Phys. Rev. A. 87(3), 032115 (2013)
[16] Yamamoto, N., Parametrization of the feedback Hamiltonian realizing a pure steady state, Phys. Rev. A, 72, 2, 024104 (2005) · doi:10.1103/PhysRevA.72.024104
[17] Zhang, J.; Wu, Rb; Li, Cw; Tarn, Tj, Protecting coherence and entanglement by feedback controls, IEEE Transactions on Automation Control, 55, 3, 619-633 (2010) · Zbl 1368.81096 · doi:10.1109/TAC.2009.2039238
[18] Qi, B.; Pan, H.; Guo, L., Further results on stabilizing control of quantum systems, IEEE Trans. Autom. Control, 58, 5, 1349-1354 (2013) · Zbl 1538.81033 · doi:10.1109/TAC.2012.2224252
[19] Zhang, J.; Liu, Yx; Wu, Rb; Jacobs, K.; Nori, F., Quantum feedback: theory, experiments, and applications, Phys. Rep., 679, 1-60 (2017) · Zbl 1366.81191 · doi:10.1016/j.physrep.2017.02.003
[20] Mirrahimi, M.; Handel, Rv, Stabilizing feedback controls for quantum systems, SIAM J. Control. Optim., 46, 2, 445-467 (2007) · Zbl 1136.81342 · doi:10.1137/050644793
[21] Braunstein, Samuel L.; Caves, Carlton M., Statistical distance and the geometry of quantum states, Physical Review Letters, 72, 22, 3439-3443 (1994) · Zbl 0973.81509 · doi:10.1103/PhysRevLett.72.3439
[22] Dittmann, J., Explicit formulae for the Bures metric, Journal of Physics A: Mathematical and General, 32, 14, 2663-2670 (1999) · Zbl 0971.81012 · doi:10.1088/0305-4470/32/14/007
[23] Zhong, W.; Sun, Z.; Ma, J.; Wang, Xg; Nori, F., Fisher information under decoherence in Bloch representation, Phys. Rev. A, 87, 2, 022337 (2013) · doi:10.1103/PhysRevA.87.022337
[24] Berrada, K., Non-Markovian Effect on the Precision of Parameter Estimation, Phys. Rev. A, 88, 3, 035806 (2013) · doi:10.1103/PhysRevA.88.035806
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.