×

A high-order compact finite difference scheme and precise integration method based on modified Hopf-Cole transformation for numerical simulation of \(n\)-dimensional Burgers’ system. (English) Zbl 1433.65156

Summary: This paper modifies an \(n\)-dimensional Hopf-Cole transformation to the \(n\)-dimensional Burgers’ system. We obtain the \(n\)-dimensional heat conduction equation through the modification of the Hopf-Cole transformation. Then, the fourth-order precise integration method (PIM) in combination with a spatially global sixth-order compact finite difference (CFD) scheme is presented to solve the equation with high accuracy. Moreover, coupling with the Strang splitting method, the scheme is extended to multi-dimensional (two, three-dimensional) Burgers’ system. Numerical results show that the proposed method appreciably improves the computational accuracy compared with the existing numerical method. Moreover, the two-dimensional and three-dimensional examples demonstrate excellent adaptability, and the numerical simulation results also have very high accuracy in medium Reynolds numbers.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35Q53 KdV equations (Korteweg-de Vries equations)
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs

Software:

PFQ

References:

[1] BATEMAN, H., Some recent researches on the motion of fluids, Month. Weather Rev., 43, 4, 163-170 (1915)
[2] Burgers, J. M.; Nieuwstadt, F. T.M.; Steketee, J. A., Selected Papers of J. M. Burgers (1995), Springer Netherlands · Zbl 1454.01059
[3] Burgers, J., A mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics, 1, 171-199 (1948), Elsevier
[4] Zabusky, N. J.; Kruskal, M. D., Interaction of “solitions” in a collistionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15, 6, 240-243 (1965) · Zbl 1201.35174
[5] K. Rahman, N. Helil, R. Yimin, Some new semi-implicit finite difference schemes for numerical solution of Burgers equation, Proceedings of the International Conference on Computer Application and System Modeling (1) 63-75. doi:10.1007/s00244-017-0417-6.
[6] Hopf, E., The partial differential equation ut+ uux= μxx, Commun. Pure Appl. Math., 3, 3, 201-230 (1950) · Zbl 0039.10403
[7] Cole, J. D., On a quaslinear parabolic equations occurring in aerodynamics, Q. Appl. Math., 9, 2, 225-236 (1951) · Zbl 0043.09902
[8] Kumar, M.; Pandit, S., A composite numerical scheme for the numerical simulation of coupled Burgers’ equation, Comput. Phys. Commun., 185, 3, 809-817 (2014) · Zbl 1360.35117
[9] Brezis, H.; Browder, F., Partial differential equations in the 20th century, Adv. Math., 135, 1, 76-144 (1998) · Zbl 0915.01011
[10] U. Frisch, J. Bec, Burgulence, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 341-383., doi:10.1007/3-540-45674-0_7.
[11] Bhatt, H. P.; Khaliq, A. Q., Fourth-order compact schemes for the numerical simulation of coupled Burgers’ equation, Comput. Phys. Commun., 200, 117-138 (2016) · Zbl 1351.35167
[12] Gao, Q.; Zou, M. Y., An analytical solution for two and three dimensional nonlinear Burgers’ equation, Appl. Math. Model., 45, 255-270 (2016) · Zbl 1446.35172
[13] Khater, A. H.; Temsah, R. S.; Hassan, M. M., A Chebyshev spectral collocation method for solving Burgers’-type equations, J. Comput. Appl. Math., 222, 2, 333-350 (2008) · Zbl 1153.65102
[14] Mittal, R. C.; Arora, G., Numerical solution of the coupled viscous Burgers’ equation, Commun. Nonlinear Sci. Numer. Simul., 16, 3, 1304-1313 (2011) · Zbl 1221.65264
[15] Jaradat, H. M.; Syam, M.; Alquran, M.; Al Shara, S.; Abohassn, K. M., A new two-mode coupled Burgers equation: conditions for multiple kink solution and singular kink solution to exist, AIN Shams Eng. J., 9, 4, 3239-3244 (2018)
[16] Jiwari, R.; Mittal, R. C.; Sharma, K. K., A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers’ equation, Appl. Math. Comput., 219, 12, 6680-6691 (2013) · Zbl 1335.65070
[17] Mittal, R. C.; Jiwari, R.; Sharma, K. K., A numerical scheme based on differential quadrature method to solve time dependent Burgers’ equation, Eng. Comput. (Swansea, Wales), 30, 1, 117-131 (2013)
[18] Tamsir, M.; Srivastava, V. K.; Jiwari, R., An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers’ equation, Appl. Math. Comput., 290, 111-124 (2016) · Zbl 1410.65414
[19] Olshanskii, M. A., A connection between filter stabilization and Eddy Viscosity models, Numer. Methods Part. Differ. Equ., 23, November 2013, 904-922 (2007)
[20] Chan, C. H.; Czubak, M., Regularity of solutions for the critical N-dimensional Burgers’ equation, Annales de l’Institut Henri Poincare (C) Analyse Non Lineaire, 27, 2, 471-501 (2010) · Zbl 1189.35354
[21] Chen, Y.; Fan, E.; Yuen, M., The Hopf-Cole transformation, topological solitons and multiple fusion solutions for the n-dimensional Burgers system, Phys. Lett. Sec. A Gen. Atom. Solid State Phys., 380, 1-2, 9-14 (2016) · Zbl 1377.35055
[22] Wang, M.; Zhang, J.; Li, X., N-dimensional Auto-Bäcklund transformation and exact solutions to n-dimensional Burgers system, Appl. Math. Lett., 63, 46-52 (2017) · Zbl 1348.35012
[23] Andrea, F. D.; Vautard, R., Extratropical low-frequency variability as a low-dimensional problem I: a simplified model, Q. J. R. Meteorol. Soc., 127, 574, 1357-1374 (2001)
[24] Marsden, J. E.; Sirovich, L.; Antman, S. S.; Iooss, G.; Holmes, P.; Barkley, D.; Dellnitz, M.; Newton, P., Texts in Applied Mathematics 2, Mech. Symmet., 17 (1994)
[25] Li, J.; Chen, Y.-T., Computational Partial Differential Equations Using MATLAB (2008), Taylor & Francis Group
[26] Dennis, S. C.R.; Hudson, J. D., Compact h4 finite-difference approximations to Operators of Navier-Stokes Type, J. Comput. Phys., 85, 2, 390-416 (1989) · Zbl 0681.76031
[27] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 1, 16-42 (1992) · Zbl 0759.65006
[28] Zhao, J., Compact finite difference methods for high order integro-differential equations, Appl. Math. Comput., 221, 66-78 (2013) · Zbl 1329.65163
[29] Lai, M. C.; Tseng, J. M., A formally fourth-order accurate compact scheme for 3D Poisson equation in cylindrical coordinates, J. Comput. Appl. Math., 201, 1, 175-181 (2007) · Zbl 1115.65122
[30] Nihei, T.; Ishii, K., A fast solver of the shallow water equations on a sphere using a combined compact difference scheme, J. Comput. Phys., 187, 2, 639-659 (2003) · Zbl 1061.76513
[31] Sutmann, G., Compact finite difference schemes of sixth order for the Helmholtz equation, J. Comput. Appl. Math., 203, 1, 15-31 (2007) · Zbl 1112.65099
[32] Wang, X.; Yang, Z. F.; Huang, G. H., High-order compact difference scheme for convection-diffusion problems on nonuniform grids, J. Eng. Mech. ASCE, 131, 12, 1221-1228 (2005)
[33] Kumar, V., High-order compact finite-difference scheme for singularly-perturbed reaction-diffusion Problems on a new mesh of Shishkin type, J. Optim. Theory Appl., 143, 1, 123-147 (2009) · Zbl 1177.65125
[34] Mehra, M.; Patel, K. S., Algorithm 986, ACM Trans. Math. Softw., 44, 2, 1-31 (2017) · Zbl 1484.65359
[35] Sen, S., Fourth order compact schemes for variable coefficient parabolic problems with mixed derivatives, Comput. Fluids, 134-135, 81-89 (2016) · Zbl 1390.76619
[36] Moler, C.; Van Loan, C., Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45, 1, 3-49 (2003) · Zbl 1030.65029
[37] Wan-Xie, Z., On precise integration method, J. Comput. Appl. Math., 163, 1, 59-78 (2004) · Zbl 1046.65053
[38] Zhang, Q.; Zhang, C.; Wang, L., The compact and Crank-Nicolson ADI schemes for two-dimensional semilinear multidelay parabolic equations, J. Comput. Appl. Math., 306, 217-230 (2016) · Zbl 1382.65261
[39] Karaa, S.; Zhang, J., High order ADI method for solving unsteady convection-diffusion problems, J. Comput. Phys., 198, 1, 1-9 (2004) · Zbl 1053.65067
[40] Society for Industrial and Applied Mathematics URL: http://www.jstor.org/stable/2098834. · Zbl 0067.35801
[41] Published by: Society for Industrial and Applied Mathematics Stable. · Zbl 0184.38503
[42] Kadalbajoo, M. K.; Awasthi, A., A numerical method based on Crank-Nicolson scheme for Burgers’ equation, Appl. Math. Comput., 182, 2, 1430-1442 (2006) · Zbl 1112.65081
[43] Mukundan, V.; Awasthi, A., Efficient numerical techniques for Burgers’ equation, Appl. Math. Comput., 262, 282-297 (2015) · Zbl 1410.65322
[44] Jiwari, R., A hybrid numerical scheme for the numerical solution of the Burgers’ equation, Comput. Phys. Commun., 188, 59-67 (2015) · Zbl 1344.65082
[45] Jiwari, R., A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation, Comput. Phys. Commun., 183, 11, 2413-2423 (2012) · Zbl 1302.35337
[46] Seydaoǧlu, M., An accurate approximation algorithm for Burgers’ equation in the presence of small viscosity, J. Comput. Appl. Math., 344, 473-481 (2018) · Zbl 1464.65092
[47] Wei, G. W.; Zhang, D. S.; Kouri, D. J.; Hoffman, D. K., Distributed approximating functional approach to Burgers’ equation in one and two space dimensions, Comput. Phys. Commun., 93, 109, 93-109 (1998) · Zbl 0933.65120
[48] Zhang, X. H.; Ouyang, J.; Zhang, L., Element-free characteristic Galerkin method for Burgers’ equation, Eng. Anal. Bound. Elem., 33, 3, 356-362 (2009) · Zbl 1244.76097
[49] Zhang, L.; Ouyang, J.; Wang, X.; Zhang, X., Variational multiscale element-free Galerkin method for 2D Burgers’ equation, J. Comput. Phys., 229, 19, 7147-7161 (2010) · Zbl 1425.35167
[50] ul Islam, S.; Šarler, B.; Vertnik, R.; Kosec, G., Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers’ equations, Appl. Math. Modell., 36, 3, 1148-1160 (2012) · Zbl 1243.76076
[51] Perger, W. F.; Bhalla, A.; Nardin, M., A numerical evaluator for the generalized hypergeometric series, Comput. Phys. Commun., 77, 2, 249-254 (1993) · Zbl 0854.65015
[52] Zhong, W. X., Combined method for the solution of asymmetric Riccati differential equations, Comput. Methods Appl. Mech. Eng., 191, 1, 93-102 (2001) · Zbl 0995.65074
[53] Zhang, J.; Gao, Q.; Tan, S. J.; Zhong, W. X., A precise integration method for solving coupled vehicle-track dynamics with nonlinear wheel-rail contact, J. Sound Vib., 331, 21, 4763-4773 (2012)
[54] Wang, M. F.; Au, F. T., On the precise integration methods based on Padé approximations, Comput. Struct., 87, 5-6, 380-390 (2009)
[55] Zhou, F.; You, Y.; Li, G.; Xie, G.; Li, G., The precise integration method for semi-discretized equation in the dual reciprocity method to solve three-dimensional transient heat conduction problems, Eng. Anal. Bound. Elem., 95, June, 160-166 (2018) · Zbl 1403.80034
[56] Han, F.; Dai, W., New higher-order compact finite difference schemes for 1D heat conduction equations, Appl. Math. Model., 37, 16-17, 7940-7952 (2013) · Zbl 1427.65163
[57] Liang, X.; Bhatt, H., Exponential time differencing schemes for the 3-coupled nonlinear fractional Schrödinger equation, Adv. Differ. Equ., 9, 1-17 (2018) · Zbl 1448.65186
[58] Kutluay, S.; Bahadir, A. R.; Özde, A., Numerical solution of one-dimensional Burgers equation: Explicit and exact-explicit finite difference methods, J. Comput. Appl. Math., 103, 2, 251-261 (1999) · Zbl 0942.65094
[59] Mittal, R. C.; Jain, R. K., Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines collocation method, Appli. Math. Comput., 218, 15, 7839-7855 (2012) · Zbl 1242.65209
[60] Li, D.; Zhang, C.; Ran, M., A linear finite difference scheme for generalized time fractional Burgers equation, Appl. Math. Model., 40, 11-12, 6069-6081 (2016) · Zbl 1465.65075
[61] Lai, H.; Ma, C., A new lattice Boltzmann model for solving the coupled viscous Burgers’ equation, Physica A Stat. Mech. Appl., 395, 445-457 (2014) · Zbl 1395.76070
[62] Bak, S.; Kim, P.; Kim, D., A semi-Lagrangian approach for numerical simulation of coupled Burgers’ equations, Commun. Nonlinear Sci. Numer. Simul., 69, 31-44 (2019) · Zbl 1524.35327
[63] Liao, W., A fourthorder finite-difference method for solving the system of two-dimensional Burgers’ equations, Int. J. Numer. Methods Fluids, 64, 5 (2010) · Zbl 1377.65108
[64] Sheu, T. W.; Chen, C. F.; Hsieh, L. W., Development of a sixth-order two-dimensional convection-diffusion scheme via Cole-Hopf transformation, Comput. Methods Appl. Mech. Eng., 191, 27-28, 2979-2995 (2002) · Zbl 1059.76050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.