×

Connecting dots: from local covariance to empirical intrinsic geometry and locally linear embedding. (English) Zbl 1433.62142

Summary: Local covariance structure under the manifold setup has been widely applied in the machine-learning community. Based on the established theoretical results, we provide an extensive study of two relevant manifold learning algorithms, empirical intrinsic geometry (EIG) and locally linear embedding (LLE) under the manifold setup. Particularly, we show that without an accurate dimension estimation, the geodesic distance estimation by EIG might be corrupted. Furthermore, we show that by taking the local covariance matrix into account, we can more accurately estimate the local geodesic distance. When understanding LLE based on the local covariance structure, its intimate relationship with the curvature suggests a variation of LLE depending on the “truncation scheme”. We provide a theoretical analysis of the variation.

MSC:

62H12 Estimation in multivariate analysis
62R30 Statistics on manifolds
68T05 Learning and adaptive systems in artificial intelligence

References:

[1] ; Arias-Castro, J. Mach. Learn. Res., 18 (2017)
[2] 10.1162/089976603321780317 · Zbl 1085.68119 · doi:10.1162/089976603321780317
[3] ; Brand, Advances in neural information processing systems, 15 (NIPS 2002), 961 (2003)
[4] 10.1080/01621459.2013.827984 · Zbl 1426.62402 · doi:10.1080/01621459.2013.827984
[5] 10.1016/j.acha.2006.04.006 · Zbl 1095.68094 · doi:10.1016/j.acha.2006.04.006
[6] 10.1073/pnas.1031596100 · Zbl 1130.62337 · doi:10.1073/pnas.1031596100
[7] 10.1007/978-3-540-89646-3_5 · doi:10.1007/978-3-540-89646-3_5
[8] ; Goldberg, Artificial intelligence and statistics. Proceedings of Machine Learning Research, 5, 169 (2009)
[9] ; Gong, Proceedings of the 29th International Conference on Machine Learning (2012)
[10] 10.1162/neco.1997.9.7.1493 · doi:10.1162/neco.1997.9.7.1493
[11] 10.1093/imaiai/iau004 · Zbl 1309.62106 · doi:10.1093/imaiai/iau004
[12] 10.1016/j.patcog.2006.04.007 · Zbl 1096.68720 · doi:10.1016/j.patcog.2006.04.007
[13] 10.1016/j.acha.2015.09.009 · Zbl 06770640 · doi:10.1016/j.acha.2015.09.009
[14] 10.1109/TGRS.2014.2364333 · doi:10.1109/TGRS.2014.2364333
[15] 10.1109/CVPR.2013.426 · doi:10.1109/CVPR.2013.426
[16] 10.1109/TPAMI.2007.1103 · doi:10.1109/TPAMI.2007.1103
[17] 10.1126/science.290.5500.2323 · doi:10.1126/science.290.5500.2323
[18] 10.1016/j.acha.2011.11.003 · Zbl 1243.68249 · doi:10.1016/j.acha.2011.11.003
[19] 10.1080/00038628.2016.1266597 · doi:10.1080/00038628.2016.1266597
[20] 10.1016/j.acha.2007.11.001 · Zbl 1144.62044 · doi:10.1016/j.acha.2007.11.001
[21] 10.1002/cpa.21395 · Zbl 1320.68146 · doi:10.1002/cpa.21395
[22] 10.1007/s11118-006-9019-z · Zbl 1107.58014 · doi:10.1007/s11118-006-9019-z
[23] 10.1073/pnas.1307298110 · doi:10.1073/pnas.1307298110
[24] 10.1126/science.290.5500.2319 · doi:10.1126/science.290.5500.2319
[25] 10.1093/imaiai/iat003 · Zbl 1311.94019 · doi:10.1093/imaiai/iat003
[26] 10.1214/17-AOS1676 · Zbl 1405.62058 · doi:10.1214/17-AOS1676
[27] 10.1109/TBME.2014.2375292 · doi:10.1109/TBME.2014.2375292
[28] 10.1109/TSP.2016.2628348 · Zbl 1414.94699 · doi:10.1109/TSP.2016.2628348
[29] 10.1137/S1064827502419154 · Zbl 1077.65042 · doi:10.1137/S1064827502419154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.