×

A boundary-value problem for normalized Finsler infinity-Laplacian equations with singular nonhomogeneous terms. (English) Zbl 1433.35084

Summary: We study boundary-value problems of Finsler infinity-Laplacian equations with nonhomogeneous terms that may exhibit singularity when solutions vanish on the boundary.

MSC:

35J60 Nonlinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI

References:

[1] Andrea, Cianchi; Paolo, Salani, Overdetermined anisotropic elliptic problems, Math. Ann., 345, 4, 859-881 (2009) · Zbl 1179.35107
[2] Armstrong, Scott N.; Smart, Charles K., An easy proof of Jensen’s theorem on the uniqueness of infinity harmonic functions, Calc. Var. Partial Differential Equations, 37, 3-4, 381-384 (2010) · Zbl 1187.35104
[3] Armstrong Scott N. Smart, Charles K., A finite difference approach to the infinity Laplace equation and tug-of-war games, Trans. Amer. Math. Soc., 364, 2, 595-636 (2012) · Zbl 1239.91011
[4] Aronsson, G.; Crandall, M. G.; Juutinen, P., A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., 41, 439-505 (2004) · Zbl 1150.35047
[5] Bao, D.; Chern, S.-S.; Shen, Z., An Introduction to Riemann-Finsler Geometry (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0954.53001
[6] Birindelli, I.; Demengel, F., First eigenvalue and maximum principle for fully nonlinear singular operators, Adv. Differential Equations, 11, 1, 91-119 (2006) · Zbl 1132.35427
[7] Birindelli, I.; Demengel, F., Eigenvalue, maximum principle and regularity for fully nonlinear homogeneous operators, Commun. Pure Appl. Anal., 6, 2, 335-366 (2007) · Zbl 1132.35032
[8] Cirstea, F.; Rădulescu, V. D., Existence and uniqueness of positive solutions to a semilinear elliptic problem in \(R^N\), J. Math. Anal. Appl., 229, 417-425 (1999) · Zbl 0921.35054
[9] Coclite, M. G.; Palmieri, G., On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations, 14, 1315-1327 (1989) · Zbl 0692.35047
[10] Crandall, M. G., (A Visit with the \(\infty \)-Laplace Equation. Calculus of Variations and Nonlinear Partial Differential Equations. A Visit with the \(\infty \)-Laplace Equation. Calculus of Variations and Nonlinear Partial Differential Equations, Lecture Notes in Math, vol. 1927 (2008), Springer: Springer Berlin), 75-122 · Zbl 1357.49112
[11] Crandall, M. G.; Evans, L. C.; Gariepy, Z., Optimal Lipschitz extensions and the infinity-Laplacian, Calc. Var. Partial Differential Equations, 13, 2, 123-139 (2001) · Zbl 0996.49019
[12] Crandall, M. G.; Rabinowitz, P. H.; Tartar, L., On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2, 193-222 (1977) · Zbl 0362.35031
[13] Cui, S., Positive solutions for Dirichlet problems associated to semilinear elliptic equations with singular nonlinearity, Nonlinear Anal., 21, 181-190 (1993) · Zbl 0791.35048
[14] Cui, S., Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems, Nonlinear Anal., 41, 149-176 (2000) · Zbl 0955.35026
[15] Cui, S., Boundary behavior of solutions to nonlinear elliptic singular problems, (Misra, J. C., Appl. Math. in the Golden Age (2003), Narosa Publishing House: Narosa Publishing House New Delhi, India), 163-178
[16] Diaz, J. I.; Morel, J. M.; Oswald, L., An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations, 12, 1333-1344 (1987) · Zbl 0634.35031
[17] Evans, L. C.; Smart, C. K., Everywhere differentiability of infinity harmonic functions, Calc. Var. Partial Differential Equations, 42, 1-2, 289-299 (2011) · Zbl 1251.49034
[18] Feng, W.; Liu, X., Existence of entire solutions of a singular semilinear elliptic problem, Acta Math. Sin., 20, 983-988 (2004) · Zbl 1130.35037
[19] Fulks, W.; Maybee, J. S., A singular nonlinear equation, Osaka J. Math., 12, 1-9 (1960) · Zbl 0097.30202
[20] G, Lu; P, Wang, Inhomogeneous infinity Laplace equation, Adv. Math., 217, 4, 1838-1868 (2008) · Zbl 1152.35042
[21] Ghergu, M.; Rădulescu, V., Sublinear singular elliptic problems with two parameters, J. Differential Equations, 195, 520-536 (2003) · Zbl 1039.35042
[22] Ghergu, M.; Rădulescu, V., On a class of sublinear singular elliptic problems with convection term, J. Math. Anal. Appl., 311, 2, 635-646 (2005) · Zbl 1175.35052
[23] Ghergu, M.; Rădulescu, V., (Singular Elliptic Problems: Bifurcation and Asymptotic Analysis. Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and its Applications, vol. 37 (2008), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press Oxford) · Zbl 1159.35030
[24] Gómez, Ivana; Rossi, Julio D., Tug-of-war games and the infinity Laplacian with spatial dependence, Commun. Pure Appl. Anal., 12, 5, 1959-1983 (2013) · Zbl 1267.35086
[25] Goncalves, J. V.; Santos, C. A., Existence and asymptotic behavior of non-radially symmetric ground states of semilinear singular elliptic equations, Nonlinear Anal., 65, 719-727 (2006) · Zbl 1245.35045
[26] Gonçalves, J. V.A.; Rezende, M. C.; Santos, C. A., Positive solutions for a mixed and singular quasilinear problem, Nonlinear Anal., 74, 1, 132-140 (2011) · Zbl 1203.35118
[27] H. Berestycki, H.; Nirenberg, L.; Varadhan, S. R.S., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47, 1, 47-92 (1994) · Zbl 0806.35129
[28] Juutinen, Petri, Principal eigenvalue of a very badly degenerate operator and applications, J. Differential Equations, 236, 2, 532-550 (2007) · Zbl 1132.35066
[29] Koike, Shigeaki, A beginner’s guide to the theory of viscosity solutions, (MSJ Memoirs, Vol. 13 (2004), Mathematical Society of Japan: Mathematical Society of Japan Tokyo), viii+123 · Zbl 1056.49027
[30] Lair, A. V.; Shaker, A., Classical and weak solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl., 211, 371-385 (1997) · Zbl 0880.35043
[31] Lazer, A. C.; McKenna, P. J., On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc., 111, 1, 721-730 (1991) · Zbl 0727.35057
[32] Lindqvist, P.; Manfredi, J. J., The Harnack inequality for infinity-harmonic functions, Electron. J. Differential Equations, 04 (1995) · Zbl 0818.35033
[33] López-Soriano, Rafael; Navarro-Climent, José C.; Rossi, Julio D., The infinity Laplacian with a transport term, J. Math. Anal. Appl., 398, 2, 752-765 (2013) · Zbl 1257.35076
[34] Lu, G.; Wang, P., A PDE perspective of the normalized infinity Laplacian, Comm. Partial Differential Equations, 33, 1788, 10-12-1817 (2008) · Zbl 1157.35388
[35] Lu, G.; Wang, P., Infinity Laplace equation with non-trivial right-hand side, Electron. J. Differential Equations, 2010, 77, 1-12 (2010), (electronic) · Zbl 1194.35194
[36] Benyam Mebrate, Ahmed Mohammed, Comparison Principles for infinity-Laplace equations in Finsler metrics, submitted for publication. · Zbl 1433.35100
[37] Mebrate, Benyam; Mohammed, Ahmed, Infinity-Laplacian type equations and their assocaited Dirichlet Problems, Complex Var. Elliptic Equ. (2019), https://doi.org/10.1080/17476933.2018.1544632 · Zbl 1442.35124
[38] Mohammed, Ahmed, Ground state solutions for singular semi-linear elliptic equations, Nonlinear Anal., 71, 3-4, 1276-1280 (2009) · Zbl 1167.35371
[39] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D., Tug-of-war and the infinity-Laplacian, J. Amer. Math. Soc., 22, 1, 167-210 (2009) · Zbl 1206.91002
[40] Protter, M. H.; Weinberger, H. F., Maximum Principles in Differential Equations (1967), Prentice-Hall, Inc: Prentice-Hall, Inc Englewood Cliffs, N.J. · Zbl 0153.13602
[41] Santos, C. A., On ground state solutions for singular and semi-linear problems including super-linear terms at infinity, Nonlinear Anal., 71, 12, 6038-6043 (2009) · Zbl 1178.35169
[42] Savin, O., \(C^1\) Regularity for infinity harmonic functions in two dimensions, Arch. Ration. Mech. Anal., 176, 3, 351-361 (2005) · Zbl 1112.35070
[43] Shi, J.; Yao, M., On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A, 128, 1389-1401 (1998) · Zbl 0919.35044
[44] Shi, J.; Yao, M., Positive solutions for elliptic equations with singular nonlinearity, Electron. J. Differential Equations, 2005, 1-11 (2005) · Zbl 1129.35344
[45] Tilak, Bhattacharya; Mohammed, Ahmed, On solutions to Dirichlet problems involving the infinity-Laplacian, Adv. Calc. Var., 4, 4, 445-487 (2011) · Zbl 1232.35056
[46] Tilak, Bhattacharya; Mohammed, Ahmed, Inhomogeneous Dirichlet problems involving the infinity-Laplacian, Adv. Differential Equations, 17, 3-4, 225-266 (2012) · Zbl 1258.35094
[47] Wang, H.; He, Y., Existence of solutions of a normalized F-Infinity Laplacian equation, Electron. J. Differential Equations, 2014, 109, 1-17 (2014), (electronic) · Zbl 1297.35080
[48] Zhang, Z., A remark on the existence of entire solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl., 215, 579-582 (1997) · Zbl 0891.35042
[49] Zhang, Z., The existence and asymptotic behavior of the unique solution near the boundary to a singular Dirichlet problem with a convection term, Proc. Roy. Soc. Edinburgh Sect. A, 136, 209-222 (2006) · Zbl 1281.35040
[50] Zhang, Z., A remark on the existence of positive entire solutions of a sublinear elliptic problem, Nonlinear Anal., 67, 147-153 (2007) · Zbl 1143.35062
[51] Zhang, Z.; Cheng, J., Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems, Nonlinear Anal., 57, 473-484 (2004) · Zbl 1096.35050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.