×

Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation. II. (English) Zbl 1433.35014

Summary: In earlier papers, the double-layer potential has been successfully applied in solving boundary value problems for elliptic equations. All the fundamental solutions of the generalized bi-axially symmetric Helmholtz equation were known [the second author, Complex Var. Elliptic Equ. 52, No. 8, 673–683 (2007; Zbl 1147.35018)], while the potential theory was constructed only for the first one [H. M. Srivastava, the second author and J. Choi, “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation”, Sohag J Math. 2(1), 1–10 (2015)]. Here, in this paper, our goal is to construct theory of double-layer potentials corresponding to the next fundamental solution. We used some properties of one of Appell’s hypergeometric functions with respect to two variables to prove the limiting theorems, while integral equations concerning the denseness of double-layer potentials are derived.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

Citations:

Zbl 1147.35018

References:

[1] Gunter, NM., Potential theory and its applications to basic problems of mathematical physics (Translated from the Russian edition by J. R. Schulenberger) (1967), New York: Frederick Ungar Publishing Company, New York · Zbl 0164.41901
[2] Miranda, C.Partial differential equations of elliptic type. In: Second Revised Edition (Translated from the Italian edition by Z. C. Motteler), Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2. Berlin, Heidelberg and New York: Springer-Verlag; 1970. · Zbl 0198.14101
[3] Gilbert, RP., Function theoretic methods in partial differential equations (1969), New York, London: Academic Press, New York, London · Zbl 0187.35303
[4] Weinstein, A., Generalized axially symmetric potentials theory, Bull Am Math Soc, 59, 20-39 (1953) · Zbl 0053.25303 · doi:10.1090/S0002-9904-1953-09651-3
[5] Erdelyi, A., Singularities of generalized axially symmetric potentials, Comm Pure Appl Math, 2, 403-414 (1956) · Zbl 0071.32002 · doi:10.1002/cpa.3160090312
[6] Erdelyi, A., An application of fractional integrals, J Analyse Math, 14, 113-126 (1965) · Zbl 0135.33801 · doi:10.1007/BF02806382
[7] Gilbert, RP., On the singularities of generalized axially symmetric potentials, Arch Rational Mech Anal, 6, 171-176 (1960) · Zbl 0099.30601 · doi:10.1007/BF00276160
[8] Gilbert, RP., ‘Bergman’s’ integral operator method in generalized axially symmetric potential theory, J Math Phys, 5, 983-997 (1964) · Zbl 0152.23304 · doi:10.1063/1.1704199
[9] Gilbert, RP., On the location of singularities of a class of elliptic partial differential equations in four variables, Canad J Math, 17, 676-686 (1965) · Zbl 0132.33703 · doi:10.4153/CJM-1965-068-9
[10] Gilbert, RP., On the analytic properties of solutions to a generalized axially symmetric Schroodinger equations, J Diff Equ, 3, 59-77 (1967) · Zbl 0142.07901 · doi:10.1016/0022-0396(67)90006-X
[11] Gilbert, RP., An investigation of the analytic properties of solutions to the generalized axially symmetric, reduced wave equation in n+1 variables, with an application to the theory of potential scattering, SIAM J Appl Math, 16, 30-50 (1968) · Zbl 0159.40001 · doi:10.1137/0116002
[12] Gilbert, RP; Howard, H., On solutions of the generalized axially symmetric wave equation represented by Bergman operators, Proc London Math Soc, 15, 346-360 (1965) · Zbl 0135.32002 · doi:10.1112/plms/s3-15.1.346
[13] Ranger, KB., On the construction of some integral operators for generalized axially symmetric harmonic and stream functions, J Math Mech, 14, 383-401 (1965) · Zbl 0132.33702
[14] Henrici, P., Zur Funktionentheorie der Wellengleichung, Comment Math Helv, 27, 235-293 (1953) · Zbl 0052.33002 · doi:10.1007/BF02564564
[15] Henrici, P.Complete systems of solutions for a class of singular elliptic partial differential equations. In: Boundary value problems in differential equations. Madison: University of Wisconsin Press; 1960, p. 19-34. · Zbl 0107.08002
[16] Altin, A., Solutions of type \(####\) for a class of singular equations, Int J Math Sci, 5, 613-619 (1982) · Zbl 0492.35003 · doi:10.1155/S0161171282000593
[17] Altin, A., Some expansion formulas for a class of singular partial differential equations, Proc Amer Math Soc, 85, 42-46 (1982) · Zbl 0486.35018 · doi:10.1090/S0002-9939-1982-0647894-1
[18] Altin, A.; Young, EC., Some properties of solutions of a class of singular partial differential equations, Bull Ins Math Acad Sinica, 11, 81-87 (1983) · Zbl 0525.35016
[19] Fryant, AJ., Growth and complete sequences of generalized bi-axially symmetric potentials, J Diff Equ, 31, 155-164 (1979) · Zbl 0368.35035 · doi:10.1016/0022-0396(79)90141-4
[20] Huber, A., On the uniqueness of generalized axisymmetric potentials, Ann Math, 60, 351-358 (1954) · Zbl 0057.08802 · doi:10.2307/1969638
[21] Kumar, D., Approximation of growth numbers generalized bi-axially symmetric potentials, Fasciculi Math, 35, 51-60 (2005) · Zbl 1211.35100
[22] Marichev, OI., An integral representation of solutions of the generalized biaxiallu symmetric Helmholtz equation and formulas its inversion (Russian), Differencial’nye Uravnenija, Minsk, 14, 1824-1831 (1978) · Zbl 0396.35019
[23] McCoy, PA., Best \(####\)-approximation of generalized bi-axisymmetric potentials, Proc Am Math Soc, 79, 435-440 (1980) · Zbl 0451.31014
[24] Niu, PP; Lo, XB., Some notes on solvability of LPDO, J Math Res Expositions, 3, 127-129 (1983) · Zbl 0528.35017
[25] Srivastava, HM; Hasanov, A.; Choi, J., Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation, Sohag J Math, 2, 1, 1-10 (2015)
[26] Weinstein, A., Discontinuous integrals and generalized potential theory, Trans Am Math Soc, 63, 342-354 (1948) · Zbl 0038.26204 · doi:10.1090/S0002-9947-1948-0025023-X
[27] Rassias, JM; Hasanov, A., Fundamental solutions of two degenerated elliptic equations and solutions of boundary value problems in infinite area, Int J Appl Math Stat, 8, 87-95 (2007) · Zbl 1142.35306
[28] Gilbert, RP., Some properties of generalized axially symmetric potentials, Am J Math, 84, 475-484 (1962) · Zbl 0121.32501 · doi:10.2307/2372984
[29] Henrici, P., On the domain of regularity of generalized axially symmetric potentials, Proc Am Math Soc, 8, 29-31 (1957) · Zbl 0077.30301 · doi:10.1090/S0002-9939-1957-0090738-5
[30] Lo, CY., Boundary value problems of generalized axially symmetric Helmholtz equations, Port Math, 36, 279-289 (1977) · Zbl 0446.35041
[31] McCoy, PA., Polynomial approximation and growth of generalized axisymmetric potentials, Can J Math, 31, 49-59 (1979) · Zbl 0371.30035 · doi:10.4153/CJM-1979-006-7
[32] Weinacht, RJ., Some properties of generalized axially symmetric Helmholtz potentials, SIAM J Math Anal, 5, 147-152 (1974) · Zbl 0243.31009 · doi:10.1137/0505016
[33] Hasanov, A., Fundamental solutions of generalized bi-axially symmetric Helmholtz equation, Complex Var Elliptic Equ, 52, 673-683 (2007) · Zbl 1147.35018 · doi:10.1080/17476930701300375
[34] Erdelyi, A.; Magnus, W.; Oberhettinger, F., Higher transcendental functions, I (1953), New York, Toronto and London: McGraw-Hill Book Company, New York, Toronto and London · Zbl 0051.30303
[35] Appell, P.; Kampe de Feriet, J., Fonctions Hypergeometriques et Hyperspheriques; Polynomes d’Hermite (1926), Villars, Paris: Gauthier, Villars, Paris · JFM 52.0361.13
[36] Srivastava, HM, Karlsson, PW.Multiple Gaussian hypergeometric series, Halsted Press (Ellis Horwood Limited, Chicherster), New York, Chichester, Brisbane and Toronto: John Wiley and Sons; 1985. · Zbl 0552.33001
[37] Burchnall, JL; Chaundy, TW., Expansions of Appell’s double hypergeometric functions, Quart J Math Oxford Ser, 11, 249-270 (1940) · JFM 66.0326.01 · doi:10.1093/qmath/os-11.1.249
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.