×

The chaotic behaviour of piecewise smooth differential equations on two-dimensional torus and sphere. (English) Zbl 1433.34023

The authors study the global dynamics of piecewise-smooth, autonomous differential equations defined on two-dimensional sphere and torus.
Let \(M\) be either the two-dimensional sphere or the torus. Assume that there exists a smooth curve \(\Sigma\) breaking the manifold \(M\) in two connected components, \(M^+\) and \(M^-\), on which the system is smooth. Moreover the dynamics on \(\Sigma\) is assumed to satisfy the Filippov convention.
In this paper, conditions are given so that “generic” families of piecewise smooth equations on \(M\) admit periodic and dense trajectories. Further, a non-deterministic chaotic behaviour is investigated for such equations and global bifurcations are also classified.

MSC:

34A36 Discontinuous ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C40 Ordinary differential equations and systems on manifolds
34C28 Complex behavior and chaotic systems of ordinary differential equations
Full Text: DOI

References:

[1] Adler, R.; Kitchens, B.; Tresser, C., Dynamics of non-ergodic piecewise affine maps of the torus., Ergodic Theory Dynam. Syst., 21, 959-999 (2001) · Zbl 1055.37048 · doi:10.1017/S0143385701001468
[2] Ashwin, P.; Fu, X.; Lin, C., On planar piecewise and two-torus parabolic maps, Int. J. Bifur. Chaos Appl. Sci. Eng., 19, 2383-2390 (2009) · Zbl 1176.37017 · doi:10.1142/S0218127409024153
[3] Di Bernardo, M.; Budd, C. J.; Champneys, A. R.; Kowalczyk, P., Piecewise-Smooth Dynamical Systems - Theory and Applications (2008), Springer-Verlag · Zbl 1146.37003
[4] Di Bernardo, M., Colombo, A. and Fossas, E., Two-fold singularity in nonsmooth electrical systems, Proc. IEEE International Symposium on Circuits and Systems, pp. 2713-2716, 2011.
[5] Broucke, M. E.; Pugh, C. C.; Simić, S. N., Structural stability of piecewise smooth systems, Comput. Appl. Math., 20, 51-89 (2001) · Zbl 1121.37307
[6] Buzzi, C. A.; De Carvalho, T.; Euzébio, R. D., Chaotic planar piecewise smooth vector fields with non trivial minimal sets, Ergodic Theory Dynam. Syst., 36, 458-469 (2016) · Zbl 1418.37035 · doi:10.1017/etds.2014.67
[7] Buzzi, C.; De Carvalho, T.; Euzébio, R. D., On Poincaré-Bendixson theorem and non-trivial minimal sets in planar non smooth vector fields, Publ Math, 62, 13-131 (2018) · Zbl 1402.34016
[8] De Carvalho, T.; Cardoso, J. L.; Tonon, D. J., Canonical forms for codimension one planar piecewise smooth vector fields with sliding region, J. Dynam. Differ. Equ., 1-22 (2018)
[9] De Carvalho, T.; Tonon, D. J., Structural stability and normal forms of piecewise smooth vector fields on \(####\), Publ. Math. Debrecen, 86, 1-20 (2015) · Zbl 1363.34260 · doi:10.5486/PMD.2015.5911
[10] Chernov, N. I., Ergodic and statistical properties of piecewise linear hyperbolic automorphisms of the 2-torus, J. Statist. Phys., 69, 111-134 (1992) · Zbl 0925.58072 · doi:10.1007/BF01053785
[11] Chillingworth, D., Discontinuity geometry for an impact oscillator, Dynam. Syst., 17, 389-420 (2011) · Zbl 1048.34025 · doi:10.1080/1468936021000041654
[12] Colombo, A.; Di Bernardo, M.; Fossas, E.; Jeffrey, M. R., Teixeira singularities in 3D switched feedback control systems, Syst. Control Lett., 59, 10, 615-622 (2010) · Zbl 1201.93046 · doi:10.1016/j.sysconle.2010.07.006
[13] Conte, E.; Federici, A.; Zbilut, J. P., On a simple case of possible non-deterministic chaotic behavior in compartment theory of biological observables, Chaos Solitons Fractals, 22, 277-284 (2004) · Zbl 1058.92001 · doi:10.1016/j.chaos.2003.10.036
[14] Filippov, A. F., Differential equations with discontinuous righthand sides, 18 (1988), Kluwer Academic Publishers Group: Kluwer Academic Publishers Group, Dordrecht · Zbl 0664.34001
[15] Guardia, M.; Seara, T. M.; Teixeira, M. A., Generic bifurcations of low codimension of planar Filippov Systems, J. Differ. Equ., 250, 1967-2023 (2011) · Zbl 1225.34046 · doi:10.1016/j.jde.2010.11.016
[16] Hasselblatt, B.; Katok, A., Introduction to the Modern Theory of Dynamical Systems (1995), Cambridge University Press · Zbl 0878.58020
[17] Jacquemard, A.; Teixeira, M. A.; Tonon, D. J., Piecewise smooth reversible dynamical systems at a two-fold singularity, Int. J. Bifurcat Chaos, 22 (2012) · Zbl 1258.34069 · doi:10.1142/S0218127412501921
[18] Jacquemard, A.; Teixeira, M. A.; Tonon, D. J., Stability conditions in piecewise smooth dynamical systems at a two-fold singularity, J. Dyn. Control. Syst., 19, 47-67 (2013) · Zbl 1283.37057 · doi:10.1007/s10883-013-9164-9
[19] Jacquemard, A.; Tonon, D. J., Coupled systems of non-smooth differential equations, Bull. Des Sci. Math., 136, 239-255 (2012) · Zbl 1251.37050 · doi:10.1016/j.bulsci.2012.01.006
[20] Jeffrey, M. R.; Colombo, A., The two-fold singularity of discontinuous vector fields, SIAM J. Appl. Dyn. Syst., 8, 624-640 (2009) · Zbl 1178.34042 · doi:10.1137/08073113X
[21] Jeffrey, M. R.; Colombo, A., Nondeterministic chaos, and the two-fold singularity in piecewise smooth flows, SIAM J. Appl. Dyn. Syst., 10, 2, 423-451 (2011) · Zbl 1227.34044 · doi:10.1137/100801846
[22] Koslova, V. S., Roughness of a discontinuous system, Vestn. Mosk. Univ. Ser. 1 Matematika Mekhanika, 5, 16-20 (1984)
[23] Kuznetsov, Yu. A.; Rinaldi, S.; Gragnani, A., One-parameter bifurcations in planar Filippov systems, Int. J. Bifurcat. Chaos, 13, 2157-2188 (2003) · Zbl 1079.34029 · doi:10.1142/S0218127403007874
[24] Llibre, J.; Martins, R. M.; Tonon, D. J., Limit cycles of piecewise smooth differential equations on two dimensional torus, J. Dynam. Differ. Equ., 30, 1011-1027 (2018) · Zbl 1410.34095 · doi:10.1007/s10884-017-9584-4
[25] Makarenkov, O.; Lamb, J. S.W., Dynamics and bifurcations of non smooth systems: A survey, Phys. D Nonlinear Phenomena, 241, 1826-1844 (2012) · doi:10.1016/j.physd.2012.08.002
[26] Meiss, J. D., Differential Dynamical Systems (2007), SIAM: SIAM, Cham, Switerzland · Zbl 1144.34001 · doi:10.1137/1.9780898718232
[27] Orlov, Yury V., Discontinuous Systems: Lyapunov Analysis and Robust Synthesis under Uncertainty Conditions, Communications and Control Engineering (2009), Springer: Springer, Dordrecht · Zbl 1180.37004 · doi:10.1007/978-1-84800-984-4
[28] Teixeira, M. A., Stability conditions for discontinuous vector fields, J. Differ. Equ., 88, 15-29 (1990) · Zbl 0780.34035 · doi:10.1016/0022-0396(90)90106-Y
[29] Teixeira, M. A., Generic bifurcations of sliding vector fields, J. Math. Anal. Appl., 176, 436-457 (1993) · Zbl 0780.34021 · doi:10.1006/jmaa.1993.1226
[30] Teixeira, M.A., Perturbation theory for non-smooth systems. In Meyers: Encyclopedia of Complexity and Systems Science 152, 2008.
[31] Tkachenko, V.I., On the existence of a piecewise-smooth invariant torus of an impulse system. Methods for investigating differential and functional-differential equations, pp. 91-96, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev (1990).
[32] Vishik, S. M., Vector fields near the boundary of a manifold, Vestnik, Moskov, Univ. Serv. I, Mat. Meh., 27, 1, 21-28 (1972) · Zbl 0231.57013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.