×

Coexistence of firing patterns and its control in two neurons coupled through an asymmetric electrical synapse. (English) Zbl 1432.92024

Summary: In this paper, the effects of asymmetry in an electrical synaptic connection between two neuronal oscillators with a small discrepancy are studied in a 2D Hindmarsh-Rose model. We have found that the introduced model possesses a unique unstable equilibrium point. We equally demonstrate that the asymmetric electrical couplings as well as external stimulus induce the coexistence of bifurcations and multiple firing patterns in the coupled neural oscillators. The coexistence of at least two firing patterns including chaotic and periodic ones for some discrete values of coupling strengths and external stimulus is demonstrated using time series, phase portraits, bifurcation diagrams, maximum Lyapunov exponent graphs, and basins of attraction. The PSpice results with an analog electronic circuit are in good agreement with the results of theoretical analyses. Of most/particular interest, multistability observed in the coupled neuronal model is further controlled based on the linear augmentation scheme. Numerical results show the effectiveness of the control strategy through annihilation of the periodic coexisting firing pattern. For higher values of the coupling strength, only a chaotic firing pattern survives. To the best of the authors’ knowledge, the results of this work represent the first report on the phenomenon of coexistence of multiple firing patterns and its control ever present in a 2D Hindmarsh-Rose model connected to another one through an asymmetric electrical coupling and, thus, deserves dissemination.
©2020 American Institute of Physics

MSC:

92C20 Neural biology
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models
Full Text: DOI

References:

[1] Borgers, C., An Introduction to Modeling Neuronal Dynamics, 443 (2017), Springer International Publishing AG · Zbl 1382.92001
[2] Mondal, A.; Kumar, U. R.; Ma, J.; Yadav, B. K.; Sharma, S. K.; Mondal, A., Bifurcation analysis and diverse firing activities of a modified excitable neuron model, Cogn. Neurodyn., 13, 4, 393-407 (2019) · doi:10.1007/s11571-019-09526-z
[3] Aram, Z.; Jafari, S.; Ma, J.; Sprott, J. C.; Zendehrouh, S.; Pham, V. T., Using chaotic artificial neural networks to model memory in the brain, Commun. Nonlinear Sci. Numer. Simulat., 44, 2017, 449-459 (2017) · Zbl 1467.92010 · doi:10.1016/j.cnsns.2016.08.025
[4] Chen, S. S.; Cheng, C. Y.; Liu, Y., Application of a two-dimensional Hindmarsh-Rose type model for bifurcation analysis, Int. J. Bifurcation Chaos, 23, 3, 1350055 (2013) · Zbl 1270.34121 · doi:10.1142/S0218127413500557
[5] Ma, J.; Tang, J., A review for dynamics in neuron and neuronal network, Nonlinear Dyn., 89, 3, 1569-1578 (2017) · doi:10.1007/s11071-017-3565-3
[6] Xu, Y.; Jia, Y.; Ge, M. Y.; Lu, L. L.; Yang, L. J.; Zhan, X., Effects of ion channel blocks on electrical activity of stochastic Hodgkin-Huxley neural network under electromagnetic induction, Neurocomputing, 283, 196-204 (2018) · doi:10.1016/j.neucom.2017.12.036
[7] Stankevich, N.; Mosekilde, E., Coexistence between silent and bursting states in a biophysical Hodgkin-Huxley-type of model, Chaos, 27, 123101 (2017) · doi:10.1063/1.4986401
[8] Gu, H., Biological experimental observations of an unnoticed chaos as simulated by the Hindmarsh-Rose model, PLoS One, 8, 12, e81759 (2013) · doi:10.1371/journal.pone.0081759
[9] Gu, H. G.; Pan, B. B.; Chen, G. R.; Duan, L. X., Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models, Nonlinear Dyn., 78, 1, 391-407 (2014) · doi:10.1007/s11071-014-1447-5
[10] Wu, X. Y.; Ma, J.; Yuan, L. H.; Liu, Y., Simulating electric activities of neurons by using PSPICE, Nonlinear Dyn., 75, 1-2, 113-126 (2014) · doi:10.1007/s11071-013-1053-y
[11] Mineeja, K. K.; Ignatius, R. P., Spatiotemporal activities of a pulse-coupled biological neural network, Nonlinear Dyn., 92, 4, 1881-1897 (2018) · doi:10.1007/s11071-018-4169-2
[12] Njitacke, Z. T.; Kengne, J., Nonlinear dynamics of three-neurons-based Hopfield neural networks (HNNs): Remerging Feigenbaum trees, coexisting bifurcations and multiple attractors, J. Circuits Syst. Comput., 28, 7, 1950121 (2019) · doi:10.1142/S0218126619501214
[13] Njitacke, Z. T.; Kengne, J.; Fonzin, F. T.; Leutcha, B. P.; Fotsin, H. B., Dynamical analysis of a novel 4-neurons based Hopfield neural network: Emergence of antimonotonicity and coexistence of multiple stable states, Int. J. Dyn. Control, 7, 823-841 (2019) · doi:10.1007/s40435-019-00509-w
[14] Njitacke, Z. T.; Kengne, J.; Fotsin, H. B., A plethora of behaviors in a memristor based Hopfield neural networks (HNNs), Int. J. Dyn. Control, 7, 1, 36-52 (2018) · doi:10.1007/s40435-018-0435-x
[15] Megam, N. E. B.; Fotsin, H. B.; Louodop, F. P.; Kamdoum, T. V.; Hilda, C. A., Bifurcations and multistability in the extended Hindmarsh-Rose neuronal oscillator, Chaos Solitons Fractals, 85, 151-163 (2016) · Zbl 1355.34078 · doi:10.1016/j.chaos.2016.02.001
[16] Bao, B.; Hu, A.; Xu, Q.; Bao, H.; Xu, H.; Chen, M., AC-induced coexisting asymmetric bursters in the improved Hindmarsh-Rose model, Nonlinear Dyn., 92, 1695-1706 (2018) · doi:10.1007/s11071-018-4155-8
[17] Lv, M.; Wang, C.; Ren, G.; Ma, J.; Song, X., Model of electrical activity in a neuron under magnetic flow effect, Nonlinear Dyn., 85, 3, 1479-1490 (2016) · doi:10.1007/s11071-016-2773-6
[18] Ge, M.; Jia, Y.; Xu, Y.; Yang, L., Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation, Nonlinear Dyn., 91, 1, 515-523 (2017) · doi:10.1007/s11071-017-3886-2
[19] Lv, M.; Ma, J., Multiple modes of electrical activities in a new neuron model under electromagnetic radiation, Neurocomputing, 205, 375-381 (2016) · doi:10.1016/j.neucom.2016.05.004
[20] Bao, B.; Hu, A.; Bao, H.; Xu, Q.; Chen, M.; Wu, H., Three-dimensional memristive Hindmarsh-Rose neuron model with hidden coexisting asymmetric behaviors, Complexity, 2018, 3872573 · doi:10.1155/2018/3872573
[21] Bao, H.; Liu, W.; Hu, A., Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction, Nonlinear Dyn., 95, 1, 43-56 (2018) · doi:10.1007/s11071-018-4549-7
[22] Takembo, C. N.; Mvogo, A.; Ekobena, F. H. P.; Kofané, T. C., Localized modulated wave solution of diffusive FitzHugh-Nagumo cardiac networks under magnetic flow effect, Nonlinear Dyn., 95, 2, 1079-1098 (2018) · Zbl 1439.35456 · doi:10.1007/s11071-018-4617-z
[23] Takembo, C. N.; Mvogo, A.; Ekobena, F. H. P.; Kofané, T. C., Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network, Nonlinear Dyn., 95, 2, 1067-1078 (2018) · Zbl 1439.92021 · doi:10.1007/s11071-018-4616-0
[24] Mostaghimi, S.; Nazarimehr, F.; Jafari, S.; Ma, J., Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow, Appl. Math. Comput., 348, 42-56 (2019) · Zbl 1428.92022 · doi:10.1016/j.amc.2018.11.030
[25] Usha, K.; Subha, P. A., Hindmarsh-Rose neuron model with memristors, Biosystems, 178, 1-9 (2019) · Zbl 1437.70041 · doi:10.1016/j.biosystems.2019.01.005
[26] Ren, G.; Xu, Y.; Wang, C., Synchronization behavior of coupled neuron circuits composed of memristors, Nonlinear Dyn., 88, 893-901 (2017) · doi:10.1007/s11071-016-3283-2
[27] Pisarchik, A. N.; Jaimes-Reategui, R.; Garcıa-Vellisca, M. A., Asymmetry in electrical coupling between neurons alters multistable firing behavior, Chaos, 28, 033605 (2018) · doi:10.1063/1.5003091
[28] Bao, H.; Hu, A.; Liu, W., Bipolar pulse-induced coexisting firing patterns in two-dimensional Hindmarsh-Rose neuron model, Int. J. Bifurcation Chaos, 29, 1, 1950006 (2019) · Zbl 1415.34084 · doi:10.1142/S0218127419500068
[29] Sprott, J. C., A proposed standard for the publication of new chaotic systems, Int. J. Bifurcation Chaos, 21, 2391-2394 (2011) · doi:10.1142/S021812741103009X
[30] Kengne, J.; Njitacke, Z. T.; Negou, A. N.; Fouodji, M. T.; Fotsin, H. B., Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit, Int. J. Bifurcation Chaos, 25, 4, 1550052 (2015) · doi:10.1142/S0218127415500522
[31] Kengne, J.; Njitacke, Z. T.; Kamdoum, V. T.; Negou, A. N., Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit, Chaos, 25, 103126 (2015) · Zbl 1374.94910 · doi:10.1063/1.4934653
[32] Jafari, S.; Sprott, J. C.; Golpayegani, S. M. R. H., Elementary quadratic chaotic flows with no equilibria, Phys. Lett. A, 377, 9, 699-702 (2013) · Zbl 1428.34059 · doi:10.1016/j.physleta.2013.01.009
[33] Jafari, S.; Sprott, J. C., Simple chaotic flows with a line equilibrium, Chaos Solitons Fractals, 57, 79-84 (2013) · Zbl 1355.37056 · doi:10.1016/j.chaos.2013.08.018
[34] Kengne, J.; Tagne, M. R. L.; Fozin, T. F.; Kengnou, T. A. N., Effects of symmetric and asymmetric nonlinearity on the dynamics of a novel chaotic jerk circuit: Coexisting multiple attractors, period doubling reversals, crisis, and offset boosting, Chaos Solitons Fractals, 121, 63-84 (2019) · Zbl 1448.34101 · doi:10.1016/j.chaos.2019.01.033
[35] Wolf, A.; Swift, J. B.; Swinney, H. L.; Wastano, J. A., Determining Lyapunov exponents from time series, Physica D, 16, 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[36] Leutcho, G. D.; Kengne, J., A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors, Chaos Solitons Fractals, 113, 275-293 (2018) · doi:10.1016/j.chaos.2018.05.017
[37] Mogue, T. R. L.; Kengne, J.; Nguomkam, N. A., Multistability and chaotic dynamics of a simple jerk system with a smoothly tuneable symmetry and nonlinearity, Int. J. Dyn. Control, 7, 2, 476-495 (2018) · doi:10.1007/s40435-018-0458-3
[38] Pham, V. T.; Jafari, S.; Volos, C.; Fortun, L., Simulation and experimental implementation of a line-equilibrium system without linear term, Chaos Solitons Fractals, 120, 213-221 (2019) · doi:10.1016/j.chaos.2019.02.003
[39] Sharma, P. R.; Sharma, A.; Shrimali, M. D.; Prasad, A., Targeting fixed-point solutions in nonlinear oscillators through linear augmentation, Phys. Rev. E, 83, 067201 (2011) · doi:10.1103/PhysRevE.83.067201
[40] Sharma, P. R.; Shrimali, M. D.; Prasad, A.; Feudel, U., Controlling bistability by linear augmentation, Phys. Lett. A, 377, 2329-2332 (2013) · doi:10.1016/j.physleta.2013.07.002
[41] Fonzin Fozin, T.; Kengne, R.; Kengne, J.; Srinivasan, K.; Souffo Tagueu, M.; Pelap, F. B., Control of multistability in a self-excited memristive hyperchaotic oscillator, Int. J. Bifurcation Chaos, 29, 1950119 (2019) · Zbl 1430.94108 · doi:10.1142/S0218127419501190
[42] Peng, J.; Ding, E.; Ding, M.; Yang, W., Synchronizing hyperchaos with a scalar transmitted signal, Phys. Rev. Lett., 76, 904 (1996) · doi:10.1103/PhysRevLett.76.904
[43] Lian, K.-Y.; Liu, P.; Chiang, T.-S.; Chiu, C.-S., Adaptive synchronization design for chaotic systems via a scalar driving signal, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 49, 17-27 (2002) · doi:10.1109/81.974871
[44] Mezatio, B. A.; Motchongom, M. T.; Tekam, R. T.; Kengne, R.; Tchitnga, R.; Fomethe, A., A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability, Chaos Solitons Fractals, 120, 100-115 (2019) · Zbl 1448.34089 · doi:10.1016/j.chaos.2019.01.015
[45] Negou, A. N.; Kengne, J., A minimal three-term chaotic flow with coexisting routes to chaos, multiple solutions, and its analog circuit realization, Analog Integr. Circ. Signal Process., 101, 415-429 (2019) · doi:10.1007/s10470-019-01436-8
[46] Rajagopal, K.; Jafari, S.; Akgul, A.; Karthikeyan, A., Modified jerk system with self-exciting and hidden flows and the effect of time delays on existence of multi-stability, Nonlinear Dyn., 93, 3, 1087-1108 (2018) · doi:10.1007/s11071-018-4247-5
[47] Kaslik, E., Analysis of two- and three-dimensional fractional-order Hindmarsh-Rose type neuronal models, Frac. Calc. Appl. Anal., 20, 623-645 (2017) · Zbl 1376.92013 · doi:10.1515/fca-2017-0033
[48] Astakhov, V.; Shabunin, A., Multistability formation and synchronization loss in coupled Hénon maps: Two sides of the single bifurcational mechanism, Phys. Rev. E, 63, 056212 (2001) · doi:10.1103/PhysRevE.63.056212
[49] Bezruchko, B. P.; Prokhorov, M. D.; Seleznev, Y. P., Oscillation types, multistability, and basins of attractors in symmetrically coupled period-doubling systems, Chaos Solitons Fractals, 15, 695-711 (2003) · Zbl 1031.70012 · doi:10.1016/S0960-0779(02)00171-6
[50] Pisarchik, A. N.; Feudel, U., Control of multistability, Phys. Rep., 540, 4, 167-218 (2014) · Zbl 1357.34105 · doi:10.1016/j.physrep.2014.02.007
[51] Uzuntarla, M.; Torres, J. J.; Calim, A., Synchronization-induced spike termination in networks of bistable neurons, Neural Netw., 110, 131-140 (2019) · doi:10.1016/j.neunet.2018.11.007
[52] Andreev, A. V.; Frolov, N. S.; Pisarchik, A. N.; Hramov, A. E., Chimera state in complex networks of bistable Hodgkin-Huxley neurons, Phys. Rev. E, 100, 022224 (2019) · doi:10.1103/PhysRevE.100.022224
[53] Laing, C. R., Fronts and bumps in spatially extended Kuramoto networks, Physica D, 240, 1960 (2011) · Zbl 1262.34038 · doi:10.1016/j.physd.2011.09.009
[54] Kulminskiy, D. D.; Ponomarenko, V. I.; Prokhorov, M. D.; Hramov, A. E., Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators, Nonlinear Dyn., 98, 735 (2019) · doi:10.1007/s11071-019-05224-x
[55] Mobayen, S.; Kingni, S. T.; Pham, V.-T.; Nazarimehr, F.; Jafari, S., Analysis, synchronisation and circuit design of a new highly nonlinear chaotic system, Int. J. Syst. Sci., 49, 617 (2017) · Zbl 1385.93037 · doi:10.1080/00207721.2017.1410251
[56] Njitacke, Z. T.; Mogue, R. L. T.; Kengne, J., Hysteretic dynamics, space magnetization and offset boosting in a third-order memristive system, Iran. J. Sci. Technol. Trans. Electr. Eng. · doi:10.1007/s40998-019-00231-5
[57] Hamill, D. C., Learning about chaotic circuits with SPICE, IEEE Trans. Educ., 36, 1, 28 (1993) · doi:10.1109/13.204812
[58] Sharma, A.; Shrimali, M. D.; Prasad, A.; Ramaswamy, R.; Feudel, U., Phase-flip transition in relay-coupled nonlinear oscillators, Phys. Rev. E, 84, 1, 016226 (2011) · doi:10.1103/PhysRevE.84.016226
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.