×

Power series representations for complex bosonic effective actions. III: Substitution and fixed point equations. (English) Zbl 1432.82005

In the present paper, the authors continue their earlier investigations (for Part I and II, see [the authors, J. Math. Phys. 51, No. 5, 053305, 30 p. (2010; Zbl 1310.82005); J. Math. Phys. 51, No. 5, 053306, 20 p. (2010; Zbl 1310.82006)]), where it has been developed a polymer-like expansion that applies when the action in a functional integral is an analytic function of the fields being integrated. In this work, it is developed methods to aid the application of that technique when the method of steepest descent is used to analyze the functional integral. Besides, it is given a version of the Banach fixed point theorem that can be used to construct and control the critical fields, as analytic functions of external fields, and substitution formulae to control the change in norms that occurs when one replaces the integration fields by the sum of the critical fields and the fluctuation fields.

MSC:

82B10 Quantum equilibrium statistical mechanics (general)
82B28 Renormalization group methods in equilibrium statistical mechanics
30D10 Representations of entire functions of one complex variable by series and integrals

References:

[1] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, A functional integral representation for many boson systems. I. The partition function. {\it Ann. Henri Poincaré }9 (2008), no. 7, 1229-1273.MR 2453249 Zbl 1159.82003 · Zbl 1159.82003
[2] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, A functional integral representation for many boson systems. II. Correlation functions. {\it Ann. Henri Poincaré }9 (2008), no. 7, 1275-1307.MR 2453250 Zbl 1159.82004 · Zbl 1159.82003
[3] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, Power series representations for bosonic effective actions. {\it J. Stat. Phys. }134 (2009), no. 5-6, 839-857.MR 2518971 Zbl 1166.82007 · Zbl 1166.82007
[4] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, Power series representations for complex bosonic effective actions. I. A small field renormalization group step. {\it J. Math. Phys. }51(2010), no. 5, 053305, 30 pp.MR 2666977 Zbl 1310.82005 · Zbl 1310.82005
[5] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, Power series representations for complex bosonic effective actions. II. A small field renormalization group flow. {\it J. Math. Phys. }51(2010), no. 5, 053306, 20 pp.MR 2666978 Zbl 1310.82006 70T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz · Zbl 1310.82006
[6] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, The temporal ultraviolet limit for complex bosonic many-body models. {\it Ann. Henri Poincaré }11 (2010), no. 1-2, 151-350.MR 2658988 Zbl 1217.82010 · Zbl 1217.82010
[7] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, The Temporal Ultraviolet Limit. In J. Frohlich, M. Salmhofer, V. Mastropietro, W. De Roeck, and L. F. Cugliandolo (eds.), {\it Quantum theory from small to large scales. }École de Physique des Houches, Session XCV, 2-27 August 2010. Oxford University Press, Oxford, 2012, 99-170.Zbl 1291.82010 · Zbl 1291.82010
[8] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, Bloch theory for periodic block spin transformations. Preprint, 2016.arXiv:1609.00964[math-ph] · Zbl 1489.82029
[9] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, Complex bosonic many-body models: overview of the small field parabolic flow. {\it Ann. Henri Poincaré }18 (2017), no. 9, 2873-2903.MR 3685978 Zbl 06788817 · Zbl 1387.82029
[10] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, Operators for parabolic block spin transformations. Preprint, 2016.arXiv:1609.00971[math-ph] · Zbl 1489.82029
[11] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, The algebra of block spin renormalization group transformations. Preprint, 2016.arXiv:1609.00966[math-ph] · Zbl 1489.82029
[12] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, The small field parabolic flow for bosonic many-body models: Part 1 – Main results and algebra. Preprint, 2016. arXiv:1609.01745[math-ph] · Zbl 1407.82016
[13] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, The small field parabolic flow for bosonic many-body models: Part 2 – Fluctuation integral and renormalization. Preprint, 2016.arXiv:1609.01746[math-ph] · Zbl 1419.82021
[14] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, The small field parabolic flow for bosonic many-body models: Part 3 – Nonperturbatively small errors. Preprint, 2016.arXiv:1609.01747[math-ph] · Zbl 1407.82016
[15] T. Balaban, J. Feldman, H. Knörrer, and E. Trubowitz, The small field parabolic flow for bosonic many-body models: Part 4 – Background and critical field estimates. Preprint, 2016.arXiv:1609.01748[math-ph] · Zbl 1407.82016
[16] D. C. Brydges and P. Federbush, The cluster expansion in statistical mechanics. {\it Comm. Math. Phys. }49(1976), no. 3, 233-246.MR 0413944
[17] D. C. Brydges and P. Federbush, The cluster expansion for potentials with exponential fall-off. {\it Comm. Math. Phys. }53 (1977), no. 1, 19-30.MR 0432091
[18] E. H. Lieb and M. Loss, {\it Analysis. }Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, R.I., 1996.MR 1415616 Zbl 0873.26002 · Zbl 0873.26002
[19] J. W. Negele and H. Orland, {\it Quantum many-particle systems. }Frontiers in Physics, 68. Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1988.MR 1044771 Zbl 0984.82503 · Zbl 0984.82503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.