×

Arnold’s potentials and quantum catastrophes. (English) Zbl 1432.81039

Summary: In the Thom’s approach to the classification of instabilities in one-dimensional classical systems every equilibrium is assigned a local minimum in one of the Arnold’s benchmark potentials \(V_{(k)}(x)=x^{k+1}+c_1x^{k-1}+\dots\). We claim that in quantum theory, due to the tunneling, the genuine catastrophes (in fact, abrupt “relocalizations” caused by a minor change of parameters) can occur when the number \(N\) of the sufficiently high barriers in the Arnold’s potential becomes larger than one. A systematic classification of the catastrophes is then offered using the variable mass term \(\hbar^2/(2\mu)\), odd exponents \(k=2N+1\) and symmetry assumption \(V_{(k)}(x)=V_{(k)}(-x)\). The goal is achieved via a symbolic-manipulation-based explicit reparametrization of the couplings \(c_j\). At the not too large \(N\), a surprisingly user-friendly recipe for a systematic determination of parameters of the catastrophes is obtained and discussed.

MSC:

81Q80 Special quantum systems, such as solvable systems
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] Arnold, V. I., Catastrophe Theory (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0746.58001
[2] Zeeman, E. C., Catastrophe Theory-Selected Papers 1972-1977 (1977), Addison-Wesley: Addison-Wesley Reading · Zbl 0398.58012
[3] Thom, R., Structural Stability and Morphogenesis: An Outline of a General Theory of Models (1989), Addison-Wesley: Addison-Wesley Reading · Zbl 0698.92001
[4] https://en.wikipedia.org/wiki/Catastrophe_theory.
[5] Znojil, M., J. Phys. A, 45, Article 444036 pp. (2012) · Zbl 1263.81184
[6] Kato, T., Perturbation Theory for Linear Operators (1966), Springer: Springer Berlin · Zbl 0148.12601
[7] Znojil, M., Phys. Rev. A, 98, Article 032109 pp. (2018)
[8] Znojil, M.; Semorádová, I., Modern Phys. Lett. A, 33, Article 1850223 pp. (2018); Znojil, M.; Růžička, F., Modern Phys. Lett. A, 33, 1950085 (2019); Znojil, M., (Kuru, S.; Negro, J.; Nieto, L.-M., Integrability, Supersymmetry and Coherent States (2019), Springer International Publishing: Springer International Publishing Cham), 411-426
[9] Bagarello, F.; Gazeau, J.-P.; Szafraniec, F. H.; Znojil, M., Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects (2015), Wiley: Wiley Hoboken · Zbl 1329.81021
[10] Scholtz, F. G.; Geyer, H. B.; Hahne, F. J.W., Ann. Phys., NY, 213, 74 (1992) · Zbl 0749.47041
[11] Mostafazadeh, A., Int. J. Geom. Methods Mod. Phys., 07, 1191 (2010) · Zbl 1208.81095
[12] Znojil, M., Phys. Lett. A, 259, 220 (1999) · Zbl 0948.81535
[13] M. Znojil, in Ref. [9], pp. 7-58.
[14] Messiah, A., Quantum Mechanics I (1961), North Holland: North Holland Amsterdam
[15] Znojil, M., J. Phys. A, 41, Article 244027 pp. (2008) · Zbl 1140.81372
[16] Znojil, M., Phys. Rev. B, 40, 12468 (1989)
[17] Saxena, R. P.; Srivastava, P. K.; Varma, V. S., J. Phys. A: Math. Gen., 21, L389 (1988) · Zbl 0663.34027
[18] Olver, F. W.J., Phil. Trans. R. Soc. A, 278, 137 (1975); Chebotarev, L. V., Ann. Phys., NY, 255, 305 (1997)
[19] Chebotarev, L. V., Ann. Phys., NY, 273, 114 (1999) · Zbl 0930.34075
[20] Hauge, E. H., Rev. Modern Phys., 61, 917 (1989)
[21] Chebotarev, L. V., Phys. Stat. Solidi B, 208, 69 (1998)
[22] Hannay, J. H.; Thain, A., J. Phys. A: Math. Gen., 36, 4063 (2003) · Zbl 1052.81102
[23] Longhi, S., Opt. Lett., 43, 2929 (2018)
[24] Šťovíček, P., Phys. Lett. A, 142, 5 (1989); Šťovíček, P., J. Math. Phys., 32, 2114 (1991)
[25] Poston, J.; Stewart, I., Catastrophe Theory and its Applications (1978), Pitnam: Pitnam London; Krokidis, X.; Noury, S.; Silvi, B., J. Phys. Chem., 101, 7277 (1997)
[26] Campbell, S.; Garcia-March, M. A.; Fogarty, T., Phys. Rev. A, 90, Article 013617 pp. (2014)
[27] Anderson, P. W., Phys. Rev. Lett., 18, 1049 (1967)
[28] Longhi, S., Ann. Phys., 531, Article 1900054 pp. (2019)
[29] Znojil, M., Phys. Rev. A, 98, Article 052102 pp. (2018)
[30] Lohr-Robles, D. S.; Lopez-Moreno, E.; Hess, P. O., Nuclear Phys. B, 992, Article 121629 pp. (2019), UNSP
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.