×

A modelling study of evolving particle-laden turbulent pipe-flow. (English) Zbl 1432.76273

Summary: An Eulerian turbulent two phase flow model using kinetic theory of granular flows for the particle phase was developed in order to study evolving upward turbulent gas particle flows in a pipe. The model takes the feedback of the particles into account and its results agree well with experiments. Simulations show that the pipe length required for particle laden turbulent flow to become fully developed is up to five times longer than an unladen flow. To increase the understanding of the dependence of the development length on particle diameter a simple model for the expected development length was derived. It shows that the development length becomes shorter for increasing particle diameters, which agrees with simulations up to a particle diameter of \(100 \mu m\). Thereafter the development length becomes longer again for increasing particle diameters because larger particles need a longer time to adjust to the velocity of the carrier phase.

MSC:

76T25 Granular flows
76F99 Turbulence
Full Text: DOI

References:

[1] Amberg, G., Törnhardt, R., Winkler, C.: Finite element simulations using symbolic computing. Math. Comput. Simul. 17, 228–237 (1999)
[2] Balzer, G., Simonin, O., Boelle, A., Lavieville, J.: A unifying modelling approach for the numerical prediction of dilute and dense gas-solid two-phase flow. Tech. rep., Département Laboratoire National d’Hydraulique (1996)
[3] Benavides, A.: Eulerian-Eulerian modeling of turbulent gas-particle flow. Tech. rep., Department of Applied Mechanics, Chalmers University of Technology, Göteborg Sweden (2008)
[4] Benavides, A., van Wachem, B.: Numerical simulation and validation of dilute turbulent gas-particle flow with inelastic collisions and turbulence modulation. Powder Technol. 182, 294–306 (2008) · doi:10.1016/j.powtec.2007.06.028
[5] Benyahia, S., Syamlal, M., O’Brien, T.J.: Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe. Powder Tchnol. 156, 62–72 (2005) · doi:10.1016/j.powtec.2005.04.002
[6] Bolio, E.J., Yasuna, J.A., Sinclair, J.L.: Dilute turbulent gas-solid flow in risers with particle-particle interactions. AIChE J. 41, 1375–1388 (1995) · doi:10.1002/aic.690410604
[7] Cerbelli, S., Giusti, A., Soldati, A.: ADE approach to predicting dispersion of heavy particles in wall-bounded turbulence. Int. J. Multiphase Flow 27, 1861–1879 (2001) · Zbl 1137.76545 · doi:10.1016/S0301-9322(01)00036-2
[8] Chan, C.K., Guo, Y.C., Lau, K.S.: Numerical modeling of gas-particle flow using a comprehensive kinetic theory with turbulence modulation. Powder Technol. 150, 42–55 (2005) · doi:10.1016/j.powtec.2004.11.011
[9] Gobin, A., Neau, H., Simonin, O., Llinas, J.R., Reiling, V., Sélo, J.L.: Fluid dynamic numerical simulation of gas phase polymerization reactor. Int. J. Numer. Methods Fluids 43, 1199–1220 (2003) · Zbl 1032.76613 · doi:10.1002/fld.542
[10] Gullman-Strand, J., Amberg, G., Johansson, A.V.: Turbulence and scalar flux modelling applied to separated flows. Tech. rep., Department of Mechanics, Royal Institute of Technology, Stockholm Sweden (2004)
[11] Hadinoto, K., Curtis, J.: Numerical simulation of the Reynolds number effect on gas-phase turbulence modulation. Int. J. Multiphase Flow 35, 129–141 (2009) · doi:10.1016/j.ijmultiphaseflow.2008.10.003
[12] Hadinoto, K., Curtis, J.S.: Effect of interstitial fluid on particle-particle interactions in kinetic theory approach of dilute turbulent fluid-particle flow. Ind. Eng. Chem. Res. 43, 3604–3615 (2004) · doi:10.1021/ie030478m
[13] Hadinoto, K., Jones, E., Yurteri, C., Curtis, J.: Renyolds number dependence of gas-phase turbulence in gas-particle flows. Int. J. Multiphase Flow 31, 416–434 (2005) · Zbl 1135.76431 · doi:10.1016/j.ijmultiphaseflow.2004.11.009
[14] Hetsroni, G.: Particles-turbulence interaction. Int. J. Multiphase Flow 15, 735–746 (1989) · doi:10.1016/0301-9322(89)90037-2
[15] Hinze, J.O.: Turbulence. McGraw-Hill Book Company (1959)
[16] Jackson, R.: Locally averaged equations of motion for a mixture of identical spherical particles and a newtonian fluid. Chem. Eng. Sci. 52, 2457–2469 (1997) · doi:10.1016/S0009-2509(97)00065-1
[17] Jenkins, J.T., Louge, M.Y.: On the flux of fluctuating energy in a collisional grain flow at a flat frictional wall. Phys. Fluids 9, 2835–2840 (1997) · doi:10.1063/1.869396
[18] Johnson, P.C., Jackson, R.: Frictional-collisional constitutive relations for granular materials with application to plane shearing. J. Fluid Mech. 176, 67–93 (1987) · doi:10.1017/S0022112087000570
[19] Kulick, J.D., Fessler, J.R., Eaton, J.K.: Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109–134 (1994) · doi:10.1017/S0022112094002703
[20] Lun, C.K.K., Savage, S.B.: The effects of an velocity dependent coefficient of restitution on stresses developed by sheared granular materials. Acta Mech. 63, 15–44 (1986) · Zbl 0613.76004 · doi:10.1007/BF01182538
[21] Peirano, E., Leckner, B.: Fundamentals of turbulent gas-solid flows applied to circulating fluidized bed combustion. Prog. Energy Combust. Sci. 24, 259–296 (1998) · doi:10.1016/S0360-1285(98)00002-1
[22] Picano, F., Sardina, G., Casciola, C.: Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21, 093, 305 (2009) · Zbl 1183.76416
[23] Portela, L., Cota, P., Oliemans, R.: Numerical study of the near-wall behaviour of particles in turbulent pipe flows. Powder Technol. 125, 149–157 (2002) · doi:10.1016/S0032-5910(01)00501-0
[24] Riber, E., Moureau, V., Garcia, M., Poinsot, T., Simonin, O.: Evaluation of numerical strategies for large eddy simulation of particulate two-phase recirculating flows. J. Comp. Phys. 228, 539–564 (2009) · Zbl 1409.76046 · doi:10.1016/j.jcp.2008.10.001
[25] Schiller, L., Naumann, A.: Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Ver Deut Ing 77, 318–320 (1933)
[26] Simonin, O., Deutsch, E., Minier, J.: Eulerian prediction of the fluid/particle correlated motion in turbulent two-phase flows. Appl. Sci. Res. 51, 275–283 (1993) · Zbl 0778.76098 · doi:10.1007/BF01082549
[27] Strömgren, T., Brethouwer, G., Amberg, G., Johansson, A.V.: Modelling of turbulent gasparticle flows with focus on two-way coupling effects on turbophoresis. Submitted to AIChE J pp. (2011) · Zbl 1432.76273
[28] Strömgren, T., Brethouwer, G., Amberg, G., Johansson, A.V.: A modelling study of evolving particle-laden turbulent pipe-flow. In: Hanjalić, K., Nagano, Y., Jakirlić, S. (eds.) Proceedings of the Sixth International Symposium On Turbulence, Heat and Mass Transfer Rome, pp. 713–716 (2009) · Zbl 1432.76273
[29] Tanaka, T., Tsuji, Y.: Numerical simulation of gas-solid two-phase in a vertical pipe: On the effect of inter-particle collision. In: 4th Symposium on Gas-Solid Flows, ASME FED, vol. 121, pp. 123–128 (1991)
[30] Tsuji, Y., Morikawa, Y., Shiomi, H.: LDV measurements of an air-solid two-phase flow in a vertical pipe. J. Fluid Mech. 139, 417–434 (1984) · doi:10.1017/S0022112084000422
[31] Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, Inc. La Cañada, California (1993)
[32] Yamamoto, T., Potthoff, M., Tanaka, T., Kajishima, T., Tsuji, Y.: Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303–334 (2001) · Zbl 1004.76513
[33] Zhang, Y., Reese, J.M.: Particle-gas turbulence interactions in a kinetic theory approach to granular flows. Int. J. Multiphase Flows 27, 1945–1964 (2001) · Zbl 1137.76800 · doi:10.1016/S0301-9322(01)00039-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.