×

A new family of mixed methods for the Reissner-Mindlin plate model based on a system of first-order equations. (English) Zbl 1432.74200

Summary: The mixed method for the biharmonic problem introduced in [the authors, SIAM J. Numer. Anal. 49, No. 2, 789–817 (2011; Zbl 1226.65092)] is extended to the Reissner-Mindlin plate model. The Reissner-Mindlin problem is written as a system of first order equations and all the resulting variables are approximated. However, the hybrid form of the method allows one to eliminate all the variables and have a final system only involving the Lagrange multipliers that approximate the transverse displacement and rotation at the edges of the triangulation. Mixed finite element spaces for elasticity with weakly imposed symmetry are used to approximate the bending moment matrix. Optimal estimates independent of the plate thickness are proved for the transverse displacement, rotations and bending moments. A post-processing technique is provided for the displacement and rotations variables and we show numerically that they converge faster than the original approximations.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
74K20 Plates

Citations:

Zbl 1226.65092
Full Text: DOI

References:

[1] Amara, M., Capatina-Papaghiuc, D., Chatti, A.: New locking-free mixed method for the Reissner-Mindlin thin plate model. SIAM J. Numer. Anal. 40(4), 1561–1582 (2002) · Zbl 1033.74041 · doi:10.1137/S0036142901385222
[2] Amara, M., Thomas, J.M.: Equilibrium finite elements for the linear elastic problem. Numer. Math. 33(4), 367–383 (1979) · Zbl 0401.73079 · doi:10.1007/BF01399320
[3] Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19(1), 7–32 (1985) · Zbl 0567.65078
[4] Arnold, D.N., Brezzi, F.: Some new elements for the Reissner-Mindlin plate model. In: Boundary Value Problems for Partial Differential Equations and Applications. RMA Res. Notes Appl. Math., vol. 29, pp. 287–292. Masson, Paris (1993) · Zbl 0817.73058
[5] Arnold, D.N., Brezzi, F., Falk, R., Marini, D.L.: Locking-free Reissner-Mindlin elements without reduced integration. Comput. Methods Appl. Mech. Eng. 196(37–40), 3660–3671 (2007) · Zbl 1173.74396 · doi:10.1016/j.cma.2006.10.023
[6] Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26(6), 1276–1290 (1989) · Zbl 0696.73040 · doi:10.1137/0726074
[7] Arnold, D.N., Falk, R.S.: Edge effects in the Reissner-Mindlin plate theory. In: Noor, A.K., Belytschhko, T., Simo, J.C. (eds.) Analytic and Computational Models of Shells, pp. 71–90. ASME, New York (1989)
[8] Arnold, D.N., Falk, R.S.: The boundary layer for the Reissner-Mindlin plate model. SIAM J. Math. Anal. 21(2), 281–312 (1990) · Zbl 0698.73042 · doi:10.1137/0521016
[9] Arnold, D.N., Falk, R.S.: Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model. SIAM J. Math. Anal. 27(2), 486–514 (1996) · Zbl 0846.73027 · doi:10.1137/S0036141093245276
[10] Arnold, D.N., Falk, R.S., Winther, R.: Differential complexes and stability of finite element methods, II: the elasticity complex. In: Compatible Spatial Discretizations. IMA Vol. Math. Appl., vol. 142, pp. 47–67. Springer, New York (2006) · Zbl 1119.65399
[11] Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006) · Zbl 1185.65204 · doi:10.1017/S0962492906210018
[12] Arruchio, F., Taylor, R.L.: A triangular thick plate element with an exact thin limit. Finite Elem. Anal. Des. 19, 57–68 (1995) · Zbl 0875.73290 · doi:10.1016/0168-874X(94)00057-M
[13] Brezzi, F., Douglas, J., Marini, D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. · Zbl 0599.65072
[14] Behrens, E.M., Guzmán, J.: A mixed method for the biharmonic problem based on a system of first-order equations. SIAM J. Numer. Anal. (2010, to appear) · Zbl 1226.65092
[15] Brezzi, F., Bathe, K.-J., Fortin, M.: Mixed-interpolated elements for Reissner-Mindlin plates. Int. J. Numer. Methods Eng. 28(8), 1787–1801 (1989) · Zbl 0705.73238 · doi:10.1002/nme.1620280806
[16] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991) · Zbl 0788.73002
[17] Brezzi, F., Marini, L.D.: A nonconforming element for the Reissner-Mindlin plate. Comput. Struct. 81, 515–522 (2003) · doi:10.1016/S0045-7949(02)00418-2
[18] Christiansen, S.H., Winther, R.: Smoothed projections in finite element exterior calculus. Math. Comput. 77(262), 813–829 (2008) · Zbl 1140.65081
[19] Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77(264), 1887–1916 (2008) · Zbl 1198.65193 · doi:10.1090/S0025-5718-08-02123-6
[20] Cockburn, B., Dong, B.: An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems. J. Sci. Comput. 32(2), 233–262 (2007) · Zbl 1143.76031 · doi:10.1007/s10915-007-9130-3
[21] Chinosi, C., Lovadina, C., Marini, L.D.: Nonconforming locking-free finite elements for Reissner-Mindlin plates. Comput. Methods Appl. Mech. Eng. 195(25–28), 3448–3460 (2006) · Zbl 1119.74047 · doi:10.1016/j.cma.2005.06.025
[22] Cockburn, B., Gopalakrishnan, J.: A characterization of hybridized mixed methods for second order elliptic problems. SIAM J. Numer. Anal. 42(1), 283–301 (2004) · Zbl 1084.65113 · doi:10.1137/S0036142902417893
[23] Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak stress symmetry. Math. Comput. 79(271), 1331–1349 (2010) · Zbl 1369.74078 · doi:10.1090/S0025-5718-10-02343-4
[24] Durán, R., Ghioldi, A., Wolanski, N.: A finite element method for the Mindlin-Reissner plate model. SIAM J. Numer. Anal. 28(4), 1004–1014 (1991) · Zbl 0736.73063 · doi:10.1137/0728053
[25] Durán, R., Liberman, E.: On mixed finite element methods for the Reissner-Mindlin plate model. Math. Comput. 58(198), 561–573 (1992) · Zbl 0763.73054
[26] Falk, R.: Finite Elements for the Reissner-Mindlin problem. In: Mixed Finite Elements, Compatibility Conditions, and Applications. Lecture Notes in Mathematics, vol. 1939, pp. 195–232. Springer, Berlin (2008) · Zbl 1167.74041
[27] Falk, R.S., Tu, T.: Locking-free finite elements for the Reissner-Mindlin plate. Math. Comput. 69(231), 911–928 (2000) · Zbl 0965.74063
[28] Farhloul, M., Fortin, M.: Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. Numer. Math. 76, 419–440 (1997) · Zbl 0880.73064 · doi:10.1007/s002110050270
[29] Franca, L.P., Stenberg, R.: A modification of a low-order Reissner-Mindlin plate bending element. In: The Mathematics of Finite Elements and Applications, VII, Uxbridge, 1990, pp. 425–436. Academic Press, London (1991)
[30] Gopalarkrishnan, J., Guzmán, J.: A second elasticity element using the matrix bubble with tightened stress symmetry. Preprint
[31] Guzmán, J.: A unified analysis of several mixed methods for elasticity with weak stress symmetry. J. Sci. Comput. 44(2), 156–169 (2010) · Zbl 1203.74017 · doi:10.1007/s10915-010-9373-2
[32] Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002) · Zbl 1123.78320 · doi:10.1017/S0962492902000041
[33] Lovadina, C.: A low-order nonconforming finite element for Reissner-Mindlin plates. SIAM J. Numer. Anal. 42(6), 2688–2705 (2005) · Zbl 1080.74048 · doi:10.1137/040603474
[34] Nédélec, J.-C.: Mixed finite elements in R 3. Numer. Math. 35(3), 315–341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[35] Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods, Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin (1977)
[36] Schöberl, J.: A posteriori error estimates for Maxwell equations. Math. Comput. 77(262), 633–649 (2008) · Zbl 1136.78016
[37] Schöberl, J.: Commuting quasi-interpolation operators for mixed finite elements. Preprint ISC-01-10-MATH, Institute for Scientific Computing, Texas A&M University (2001)
[38] Scott, R.L., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990) · Zbl 0696.65007 · doi:10.1090/S0025-5718-1990-1011446-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.