×

Charactering neural spiking activity evoked by acupuncture through state-space model. (English) Zbl 1432.62367

Summary: In this paper, the underlying action mechanisms of acupuncture during neural spiking activities are studied. First, taking healthy rates as the experimental subjects, different frequencies of acupuncture stimulate their Zusanli points to obtain the evoked electrical signals of spinal dorsal horn neurons. Second, the spikes of the individual wide dynamic range (WDR) neuron are singled out according to wavelet features of different discharge waveforms and transformed into point process spike trains. Then we introduce a state-space model to describe neural spiking activities, in which acupuncture stimuli are the implicit state variables and spike trains induced by acupuncture are the observation variables. Here the implicit state process modulates neural spiking activities when driven by acupuncture. The implicit state and unknown model parameters can be estimated by the expectation-maximization (EM) algorithm. After that, model goodness of fit to spike data is assessed by Kolmogorov-Smirnov (K-S) test. Results show that acupuncture spike trains for different frequencies can be described accurately. Furthermore, the implicit state process involving the information of acupuncture time makes the potential action mechanisms of acupuncture clearer.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
92C20 Neural biology

Software:

Fahrmeir
Full Text: DOI

References:

[1] Andersson, S.; Lundeberg, T., Acupuncture-from empiricism to science-functional background to acupuncture effects in pain and disease, Med. Hypotheses, 45, 271-281 (1995)
[2] VanderPloeg, K.; Yi, X., Acupuncture in modern society, J. Acupunct. Meridian Stud., 2, 26-33 (2009)
[3] Leake, R.; Broderick, J. E., Treatment efficacy of acupuncture: a review of the research literature, Integr. Med., 1, 107-115 (1999)
[4] Manheimer, E.; White, A.; Berman, B.; Forys, K.; Ernst, E., Metaanalysis: acupuncture for low back pain, Ann. Intern. Med., 142, 651-663 (2005)
[5] Ezzo, J.; Berman, B.; Hadhazy, V. A.; Jadad, A. R.; Lao, L.; Singh, B. B., Is acupuncture effective for the treatment of chronic pain? A systematic review, Pain, 86, 217-225 (2000)
[6] Ernst, E.; Lee, M. S.; Choi, T. Y., Acupuncture: does it alleviate pain and are there serious risks? A review of reviews, Pain, 152, 755-764 (2011)
[7] Lee, A.; Fan, L. T., Stimulation of the wrist acupuncture point P6 for preventing postoperative nausea and vomiting, Cochrane Database Syst. Rev., 2 (2009)
[8] Foster, J. M.; Sweeney, B. P., The mechanisms of acupuncture analgesia, Br. J. Hosp. Med., 38, 308-312 (1987)
[9] Tang, D. A., Advances in research on the mechanism of acupuncture and moxibustion, Zhen Ci Yan Jiu, 12, 278-284 (1987)
[10] Cho, Z. H.; Chung, S. C.; Jones, J. P.; Park, J. B.; Park, H. J.; Lee, H. J.; Wong, E. K.; Min, B. I., New findings of the correlation between acupoints and corresponding brain cortices using functional MRI, Proc. Natl. Acad. Sci. U.S.A., 95, 2670-2673 (1998)
[11] Zhang, Y.; Qin, W.; Liu, P.; Tian, J.; Liang, J. M.; Karen, V. D.; Liu, Y. J., Comparison of visual cortical activations induced by electro-acupuncture at vision and nonvision-related acupoints, Neurosci. Lett., 449, 6-10 (2009)
[12] Zhang, W. T.; Jin, Z.; Cui, G. H., Relations between brain network activation and analgesic effect induced by low vs. high frequency electrical acupoint stimulation in different subjects: a functional magnetic resonance imaging study, Brain Res., 982, 168-178 (2003)
[13] Wang, T. T.; Yuan, Y.; Kang, Y.; Yuan, W. L.; Zhang, H. T.; Wu, L. Y.; Feng, Z. T., Effects of acupuncture on the expression of glial cell line-derived neurotrophic factor (GDNF) and basic fibroblast growth factor (FGF-2/bFGF) in the left sixth lumbar dorsal root ganglion following removal of adjacent dorsal root ganglia, Neurosci. Lett., 382, 236-241 (2005)
[14] Han, J. S., Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies, Trends Neurosci., 26, 1, 17-22 (2003)
[15] Backer, M.; Hammes, M. G.; Valet, M.; Deppe, M.; Conrad, B.; Tolle, T. R.; Dobos, G., Different modes of manual acupuncture stimulation differentially modulate cerebral blood flow velocity, arterial blood pressure and heart rate in human subjects, Neurosci. Lett., 333, 203-206 (2002)
[16] Cui, Y. M.; Qi, L. J., Application of Zusanli in surgery, Int. J. Clin. Acupunct., 9, 317-321 (1998)
[17] Cai, W. Y., Acupuncture and the nervous system, Am. J. Chin. Med., 20, 331-337 (1992)
[18] Takeshige, C.; Oka, K.; Mizuno, T.; Hisamitsu, T.; Luo, C. P.; Kobori, M.; Mera, H.; Fang, T. Q., The acupuncture point and its connecting central pathway for producing acupuncture analgesia, Brain Res. Bull., 30, 53-67 (1993)
[19] Andersson, S. A.; Holmgren, E., On acupuncture analgesia and the mechanism of pain, Am. J. Chin. Med., 3, 311-334 (1975)
[20] Wang, J.; Sun, L.; Fei, X.; Zhu, B., Chaos analysis of the electrical signal time series evoked by acupuncture, Chaos Solitons Fract., 33, 901-907 (2007)
[21] Wang, J.; Han, C. X.; Che, Y. Q.; Deng, B.; Guo, Y.; Guo, Y. M.; Liu, Y. Y., Nonlinear characteristics extraction from electrical signals of dorsal spinal nerve root evoked by acupuncture at Zusanli point, Acta Phys. Sin., 59, 5880-5887 (2010)
[22] Men, C.; Wang, J.; Qin, Y. M.; Deng, B.; Wei, X. L., Characterizing electrical signals evoked by acupuncture through complex network mapping: a new perspective on acupuncture, Comput. Methods Programs Biomed., 104, 498-504 (2011)
[23] Men, C.; Wang, J.; Deng, B.; Wei, X. L.; Che, Y. Q.; Han, C. X., Decoding acupuncture electrical signals in spinal dorsal root ganglion, Neurocomputing, 79, 12-17 (2012)
[24] Men, C.; Wang, J.; Qin, Y. M.; Tsang, K. M.; Deng, B., Characterizing the transmission of acupuncture signal: A combination of experimental and computational study, Appl. Math. Modell., 36, 4742-4749 (2011)
[25] Squire, L.; Berg, D.; Bloem, F.; Lac, S. D.; Ghosh, A.; Spitzer, N., Sensory System and Motor System (2009), Science Press: Science Press Bei Jing, BJ, CHN
[26] Smith, A. C.; Brown, E. N., Estimating a state-space model from point process observations, Neural Comput., 15, 965-991 (2003) · Zbl 1085.68651
[27] Fahrmeir, L.; Tutz, G., Multivariate Statistical Modelling Based on Generalized Linear Models (2001), Springer: Springer New York, NY, USA · Zbl 0980.62052
[28] Roweis, S.; Ghahramani, Z., A Unifying Review of Linear Gaussian Models, Neural Comput., 11, 305-345 (1999)
[29] Smith, A. C.; Scalon, J. D.; Wirth, S.; Yanike, M.; Suzuki, W. A.; Brown, E. N., State-space algorithms for estimating spike rate functions, Comput. Intell. Neurosci., 2010 (2010)
[30] Dempster, A. P.; Laird, N. M.; Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc., Ser. B, 39, 1-38 (1977) · Zbl 0364.62022
[31] Brown, E. N.; Barbieri, R.; Ventura, V.; Kass, R. E.; Frank, L. M., The time-rescaling theorem and its application to neural spike train data analysis, Neural Comput., 14, 325-346 (2002) · Zbl 0989.62060
[32] Quiroga, R. Q.; Nadasdy, Z.; Ben-Shaul, Y., Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering, Neural Comput., 16, 1661-1687 (2004) · Zbl 1059.94511
[33] Durbin, J.; Koopman, S. J., Time Series Analysis by State Space Methods (2001), Oxford University Press: Oxford University Press Oxford, UK · Zbl 0995.62504
[34] Kashiwagi, N.; Yanagimoto, T., Smoothing serial count data through a state-space model, Biometrics, 48, 1187-1194 (1992)
[35] Kitagawa, G.; Gersch, W., Smoothness Priors Analysis of Time Series (1996), Springer: Springer New York, NY, USA · Zbl 0853.62069
[36] Daley, D. J.; Vere-Jones, D., An introduction to the theory of point processes (2003), Springer: Springer New York, NY, USA · Zbl 1026.60061
[37] Brown, E. N., Theory of point processes for neural systems, (Chow, C. C.; Gutkin, B.; Hansel, D.; Meunier, C.; Dalibard, J., Methods and Models in Neurophysics (2005), Elsevier, Paris: Elsevier, Paris France), 691-726
[38] Riehle, A.; Grün, S.; Diesmann, M.; Aertsen, A., Spike synchronization and rate modulation differentially involved in motor cortical function, Science, 278, 1950-1953 (1997)
[39] Grün, S.; Diesmann, M.; Grammont, F.; Riehle, A.; Aertsen, A., Detecting unitary events without discretization of time, J. Neurosci. Methods, 93, 67-79 (1999)
[40] Wood, E. R.; Dudchenko, P. A.; Eichenbaum, H., The global record of memory in hippocampal neuronal activity, Nature, 397, 613-616 (1999)
[41] Barbieri, R.; Quirk, M. C.; Frank, L. M.; Wilson, M. A.; Brown, E. N., Construction and analysis of non-Poisson stimulus-response models of neural spike train activity, J. Neurosci. Methods, 105, 25-37 (2001)
[42] Shimokawa, Takeaki., Shigeru shinomoto, estimating instantaneous irregularity of neuronal firing, Neural Comput., 21, 1931-1951 (2009) · Zbl 1168.92012
[43] Kim, Hideaki, Shigeru shinomoto, estimating nonstationary input signals from a single neuronal spike train, Phys. Rev. E, 86, 051903 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.