×

Knot Floer homology obstructs ribbon concordance. (English) Zbl 1432.57021

A ribbon concordance from a knot \(K_0\) to a knot \(K_1\) is a smooth annulus \(C\subset [0,1]\times S^3\) with \(\partial C \cap \{0\} \times S^3 = -K_0\) and \(\partial C \cap \{1\} \times S^3 = K_1\), such that the projection \([0,1]\times S^3\to[0,1]\) restricts to a Morse function on \(C\) without critical points of Morse index 2. Let us write \(K_0 \leq K_1\) if such a \(C\) exists.
Note that a knot \(K\) is ribbon if and only if there is a ribbon concordance from the unknot to \(K\). Ribbon concordances were studied by C. McA. Gordon [Math. Ann. 257, 157–170 (1981; Zbl 0451.57001)], who conjectured that the relation \(\leq\) is a partial order, and found an obstruction coming from the knot group. Another previously known obstruction comes from the Blanchfield pairing/Seifert form [P. M. Gilmer, Topology Appl. 18, 313–324 (1984; Zbl 0568.57005)].
The main theorem of this paper states that a ribbon concordance \(C\) from \(K_0\) to \(K_1\) induces an injection \[ F_C\colon \widehat{HFK}(K_0) \to \widehat{HFK}(K_1) \] of knot Floer homologies. This provides a strong obstruction for \(K_0 \leq K_1\). Moreover, since knot Floer homology detects the three-genus \(g_3\), it follows as a corollary that for all knots \(K_0, K_1\) \[ K_0 \leq K_1 \quad\Longrightarrow\quad g_3(K_0) \leq g_3(K_1) \] and for \(J\) a band connected sum of knots \(J_1, \ldots, J_n\), \[ g_3(J_1) + \cdots + g_3(J_n) \leq g_3(J). \] Both of these statements were previously only known in certain special cases, e.g. if \(K_1\) is fibered in the first statement, and \(J\) is fibered or \(n = 2\) in the second statement.
To prove the main theorem, the author considers the composition \(\bar{C}C\) of \(C\) with \(\bar{C}\), the concordance from \(K_1\) to \(K_0\) obtained by turning \(C\) upside down. Although \(\bar{C}C\) is in general not isotopic to the identity concordance of \(K_0\), it does induce the identity on \(\widehat{HFK}(K_0)\), and so \(F_C\) has \(F_{\bar{C}}\) as a left inverse.
This paper has already inspired a number of similar results: injectivity also follows for Khovanov homology [A. S. Levine and I. Zemke, “Khovanov homology and ribbon concordance”, Preprint, arXiv:1903.01546], also for Khovanov-Rozansky and similar homologies [S. Kang, “Link homology theories and ribbon concordances”, Preprint, arXiv:1909.06969], and it follows for knot Floer homology under a weakened hypothesis [M. Miller and I. Zemke, “Knot Floer homology and strongly homotopy-ribbon concordances”, Preprint, arXiv:1903.05772].

MSC:

57K10 Knot theory
57K18 Homology theories in knot theory (Khovanov, Heegaard-Floer, etc.)
57R58 Floer homology

References:

[1] Chantraine, Baptiste, Some non-collarable slices of {L}agrangian surfaces, Bull. Lond. Math. Soc.. Bulletin of the London Mathematical Society, 44, 981-987 (2012) · Zbl 1251.57017 · doi:10.1112/blms/bds026
[2] Cornwell, Christopher; Ng, Lenhard; Sivek, Steven, Obstructions to {L}agrangian concordance, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 16, 797-824 (2016) · Zbl 1346.57009 · doi:10.2140/agt.2016.16.797
[3] Ekholm, Tobias; Honda, Ko; K\'{a}lm\'{a}n, Tam\'{a}s, Legendrian knots and exact {L}agrangian cobordisms, J. Eur. Math. Soc. (JEMS). Journal of the European Mathematical Society (JEMS), 18, 2627-2689 (2016) · Zbl 1357.57044 · doi:10.4171/JEMS/650
[4] Gabai, David, Genus is superadditive under band connected sum, Topology. Topology. An International Journal of Mathematics, 26, 209-210 (1987) · Zbl 0621.57004 · doi:10.1016/0040-9383(87)90061-9
[5] Ghiggini, Paolo, Knot {F}loer homology detects genus-one fibred knots, Amer. J. Math.. American Journal of Mathematics, 130, 1151-1169 (2008) · Zbl 1149.57019 · doi:10.1353/ajm.0.0016
[6] Gordon, C. {\relax McA}., Ribbon concordance of knots in the {\(3\)}-sphere, Math. Ann.. Mathematische Annalen, 257, 157-170 (1981) · Zbl 0451.57001 · doi:10.1007/BF01458281
[7] Hedden, Matthew; Watson, Liam, On the geography and botany of knot {F}loer homology, Selecta Math. (N.S.). Selecta Mathematica. New Series, 24, 997-1037 (2018) · Zbl 1432.57027 · doi:10.1007/s00029-017-0351-5
[8] Honda, K.; Kazez, W.; Mati\'c, G., Contact structures, sutured {F}loer homology and {TQFT} (2008)
[9] Juh\'{a}sz, Andr\'{a}s, Floer homology and surface decompositions, Geom. Topol.. Geometry & Topology, 12, 299-350 (2008) · Zbl 1167.57005 · doi:10.2140/gt.2008.12.299
[10] Juh\'{a}sz, Andr\'{a}s, Cobordisms of sutured manifolds and the functoriality of link {F}loer homology, Adv. Math.. Advances in Mathematics, 299, 940-1038 (2016) · Zbl 1358.57021 · doi:10.1016/j.aim.2016.06.005
[11] Juh\'{a}sz, Andr\'{a}s; Marengon, Marco, Concordance maps in knot {F}loer homology, Geom. Topol.. Geometry & Topology, 20, 3623-3673 (2016) · Zbl 1364.57013 · doi:10.2140/gt.2016.20.3623
[12] Juh\'{a}sz, Andr\'{a}s; Marengon, Marco, Computing cobordism maps in link {F}loer homology and the reduced {K}hovanov {TQFT}, Selecta Math. (N.S.). Selecta Mathematica. New Series, 24, 1315-1390 (2018) · Zbl 1397.57026 · doi:10.1007/s00029-017-0368-9
[13] Juh\'asz, Andr\'as; Zemke, Ian, Contact handles, duality, and sutured {F}loer homology (2018) · Zbl 1467.57023
[14] Kochloukova, Dessislava H., Some {N}ovikov rings that are von {N}eumann finite and knot-like groups, Comment. Math. Helv.. Commentarii Mathematici Helvetici. A Journal of the Swiss Mathematical Society, 81, 931-943 (2006) · Zbl 1166.20042 · doi:10.4171/CMH/81
[15] Miyazaki, Katura, Band-sums are ribbon concordant to the connected sum, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 126, 3401-3406 (1998) · Zbl 0913.57002 · doi:10.1090/S0002-9939-98-04352-4
[16] Miyazaki, Katura, A note on genera of band sums that are fibered, J. Knot Theory Ramifications. Journal of Knot Theory and its Ramifications, 27, 1871002-3 (2018) · Zbl 1402.57011 · doi:10.1142/S0218216518710025
[17] Ni, Yi, Knot {F}loer homology detects fibred knots, Invent. Math.. Inventiones Mathematicae, 170, 577-608 (2007) · Zbl 1138.57031 · doi:10.1007/s00222-007-0075-9
[18] Ozsv\'{a}th, Peter; Szab\'{o}, Zolt\'{a}n, Holomorphic disks and genus bounds, Geom. Topol.. Geometry and Topology, 8, 311-334 (2004) · Zbl 1056.57020 · doi:10.2140/gt.2004.8.311
[19] Ozsv\'{a}th, Peter; Szab\'{o}, Zolt\'{a}n, Holomorphic disks and knot invariants, Adv. Math.. Advances in Mathematics, 186, 58-116 (2004) · Zbl 1062.57019 · doi:10.1016/j.aim.2003.05.001
[20] Ozsv\'{a}th, Peter; Szab\'{o}, Zolt\'{a}n, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2). Annals of Mathematics. Second Series, 159, 1027-1158 (2004) · Zbl 1073.57009 · doi:10.4007/annals.2004.159.1027
[21] Ozsv\'{a}th, Peter; Szab\'{o}, Zolt\'{a}n, Holomorphic disks, link invariants and the multi-variable {A}lexander polynomial, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 8, 615-692 (2008) · Zbl 1144.57011 · doi:10.2140/agt.2008.8.615
[22] Rasmussen, Jacob Andrew, Floer Homology and Knot Complements, 126 pp. (2003)
[23] Sarkar, Sucharit, Moving basepoints and the induced automorphisms of link {F}loer homology, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 15, 2479-2515 (2015) · Zbl 1331.57015 · doi:10.2140/agt.2015.15.2479
[24] Scharlemann, Martin, Smooth spheres in {\({\bf R}^4\)} with four critical points are standard, Invent. Math.. Inventiones Mathematicae, 79, 125-141 (1985) · Zbl 0559.57019 · doi:10.1007/BF01388659
[25] Silver, D. S., On knot-like groups and ribbon concordance, J. Pure Appl. Algebra. Journal of Pure and Applied Algebra, 82, 99-105 (1992) · Zbl 0766.57006 · doi:10.1016/0022-4049(92)90013-6
[26] Strasser, Elvira Rapaport, Knot-like groups. Knots, Groups, and 3-Manifolds. papers dedicated to the memory of {R}.{H}. {F}ox), Ann. of Math. Studies, 84, 119-133 (1975) · Zbl 0299.00029 · doi:10.1515/9781400881512-011
[27] Zemke, Ian, Quasistabilization and basepoint moving maps in link {F}loer homology, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 17, 3461-3518 (2017) · Zbl 1387.57020 · doi:10.2140/agt.2017.17.3461
[28] Zemke, Ian, Link cobordisms and absolute gradings on link {F}loer homology, Quantum Topol.. Quantum Topology, 10, 207-323 (2019) · Zbl 1478.57035 · doi:10.4171/QT/124
[29] Zemke, Ian, Link cobordisms and functoriality in link {F}loer homology, J. Topol.. Journal of Topology, 12, 94-220 (2019) · Zbl 1455.57020 · doi:10.1112/topo.12085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.