×

The \( \beta \) Fermi-Pasta-Ulam-Tsingou recurrence problem. (English) Zbl 1432.37099

Summary: We perform a thorough investigation of the first Fermi-Pasta-Ulam-Tsingou (FPUT) recurrence in the \(\beta \)-FPUT chain for both positive and negative \(\beta \). We show numerically that the rescaled FPUT recurrence time \(T_r = t_r /(N + 1)^3\) depends, for large \(N\), only on the parameter \(S \equiv E \beta(N + 1)\). Our numerics also reveal that for small \(| S |, T_r\) is linear in \(S\) with positive slope for both positive and negative \(\beta \). For large \(| S |, T_r\) is proportional to \(| S |^{- 1 / 2}\) for both positive and negative \(\beta\) but with different multiplicative constants. We numerically study the continuum limit and find that the recurrence time closely follows the \(| S |^{- 1 / 2}\) scaling and can be interpreted in terms of solitons, as in the case of the KdV equation for the \(\alpha\) chain. The difference in the multiplicative factors between positive and negative \(\beta\) arises from soliton-kink interactions that exist only in the negative \(\beta\) case. We complement our numerical results with analytical considerations in the nearly linear regime (small \(| S |)\) and in the highly nonlinear regime (large \(| S |)\). For the former, we extend previous results using a shifted-frequency perturbation theory and find a closed form for \(T_r\) that depends only on \(S\). In the latter regime, we show that \(T_r \propto | S |^{- 1 / 2}\) is predicted by the soliton theory in the continuum limit. We then investigate the existence of the FPUT recurrences and show that their disappearance surprisingly depends only on \(E \beta\) for large \(N\), not \(S\). Finally, we end by discussing the striking differences in the amount of energy mixing between positive and negative \(\beta\) and offer some remarks on the thermodynamic limit.
©2019 American Institute of Physics

MSC:

37K60 Lattice dynamics; integrable lattice equations
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
39A36 Integrable difference and lattice equations; integrability tests

References:

[1] Fermi, E., Pasta, J. R., Ulam, S., and Tsingou, M., “Studies of nonlinear problems, I,” Los Alamos Report No. LA-1940, 1955. · Zbl 0353.70028
[2] Ford, J., The Fermi-Pasta-Ulam problem: Paradox turns discovery, Phys. Rep., 213, 5, 271-310 (1992) · doi:10.1016/0370-1573(92)90116-H
[3] Weissert, T. P., The Genesis of Simulation in Dynamics (1997) · Zbl 0908.58068
[4] Berman, G. P.; Izrailev, F. M., The Fermi-Pasta-Ulam problem: Fifty years of progress, Chaos, 15, 1, 015104 (2005) · Zbl 1080.37077 · doi:10.1063/1.1855036
[5] Fermi-Pasta-Ulam Problem: A Status Report, edited by G. Gallavotti (Springer-Verlag, Berlin, 2007).
[6] Ford, J., Equipartition of energy for nonlinear systems, J. Math. Phys., 2, 3, 387-393 (1961) · Zbl 0105.22402 · doi:10.1063/1.1703724
[7] Sholl, D. S.; Henry, B. I., Recurrence times in cubic and quartic Fermi-Pasta-Ulam chains: A shifted-frequency perturbation treatment, Phys. Rev. A, 44, 10, 6364-6374 (1991) · doi:10.1103/PhysRevA.44.6364
[8] Zabusky, N. J.; Kruskal, M. D., Interaction of “solitons” in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15, 6, 240-243 (1965) · Zbl 1201.35174 · doi:10.1103/PhysRevLett.15.240
[9] Flach, S.; Ivanchenko, M. V.; Kanakov, O. I., \( <mml:math display=''inline`` overflow=''scroll``> \)-Breathers and the Fermi-Pasta-Ulam problem, Phys. Rev. Lett., 95, 064102 (2005) · doi:10.1103/PhysRevLett.95.064102
[10] Christodoulidi, H.; Efthymiopoulos, C.; Bountis, T., Energy localization on \(<mml:math display=''inline`` overflow=''scroll``> \)-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences, Phys. Rev. E, 81, 016210 (2010) · doi:10.1103/PhysRevE.81.016210
[11] Zabusky, N. J., “Phenomena associated with the oscillations of a nonlinear model string,” in Proceedings of the Conference on Mathematical Models in the Physical Sciences, edited by S. Drobot (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963), pp. 99-133. · Zbl 0178.28102
[12] Zabusky, N. J., Nonlinear lattice dynamics and energy sharing, J. Phys. Soc. Jpn., 26, Suppl., 196-202 (1969)
[13] Toda, M., mechanics and statistical Mechanics of nonlinear chains, J. Phys. Soc. Jpn., 26, Suppl., 235-237 (1969)
[14] Lin, C. Y.; Goedde, C. G.; Lichter, S., Scaling of the recurrence time in the cubic Fermi-Pasta-Ulam lattice, Phys. Lett. A, 229, 6, 367-374 (1997) · Zbl 1063.82539 · doi:10.1016/S0375-9601(97)00216-8
[15] Driscoll, C. F.; O’Neil, T. M., Explanation of instabilities observed on a Fermi-Pasta-Ulam lattice, Phys. Rev. Lett., 37, 2, 69-72 (1976) · doi:10.1103/PhysRevLett.37.69
[16] Drago, G. P.; Ridella, S., Some more observations on the superperiod of the non-linear FPU system, Phys. Lett. A, 122, 8, 407-412 (1987) · doi:10.1016/0375-9601(87)90738-9
[17] Pace, S. D.; Campbell, D. K., Behavior and breakdown of higher-order Fermi-Pasta-Ulam-Tsingou recurrences, Chaos, 29, 2, 023132 (2019) · Zbl 1409.37079 · doi:10.1063/1.5079659
[18] De Luca, J.; Lichtenberg, A. J.; Lieberman, M. A., Time scale to ergodicity in the Fermi-Pasta-Ulam system, Chaos, 5, 1, 283-297 (1995) · doi:10.1063/1.166143
[19] Danshita, I.; Hipolito, R.; Oganesyan, V.; Polkovnikov, A., Quantum damping of Fermi-Pasta-Ulam revivals in ultracold Bose gases, Prog. Theor. Exp. Phys., 2014, 4, 1-8 (2014) · doi:10.1093/ptep/ptu041
[20] Kopidakis, G.; Soukoulis, C. M.; Economou, E. N., Electron-phonon interactions and recurrence phenomena in one-dimensional systems, Phys. Rev. B, 49, 7036-7039 (1994) · doi:10.1103/PhysRevB.49.7036
[21] Rosanov, N. N.; Vysotina, N. V., Recurrence for motion of solitons of the Bose-Einstein condensate in a dynamic trap, J. Opt. Soc. Am. B, 32, 5, 20-24 (2015) · doi:10.1364/JOSAB.32.000B20
[22] Abe, K.; Satofuka, N., Recurrence of initial state of nonlinear ion waves, Phys. Fluids, 24, 6, 1045-1048 (1981) · doi:10.1063/1.863496
[23] Balasubramanian, V.; Buchel, A.; Green, S. R.; Lehner, L.; Liebling, S. L., Holographic thermalization, stability of anti-de Sitter space, and the Fermi-Pasta-Ulam paradox, Phys. Rev. Lett., 113, 7, 071601 (2014) · doi:10.1103/PhysRevLett.113.071601
[24] Biasi, A.; Craps, B.; Evnin, O., Energy returns in global \(<mml:math display=''inline`` overflow=''scroll``> \), Phys. Rev. D, 100, 024008 (2019) · doi:10.1103/PhysRevD.100.024008
[25] Hirota, R.; Suzuki, K., Studies on lattice solitons by using electrical networks, J. Phys. Soc. Jpn., 28, 5, 1366-1367 (1970) · doi:10.1143/JPSJ.28.1366
[26] Ikezi, H., Experiments on ion-acoustic solitary waves, Phys. Fluids, 16, 10, 1668-1675 (1973) · doi:10.1063/1.1694194
[27] Lake, B. M.; Yuen, H. C.; Rungaldier, H.; Ferguson, W. E., Nonlinear deep-water waves: Theory and experiment. Part 2. Evolution of a continuous wave train, J. Fluid. Mech., 83, 1, 49-74 (1977) · doi:10.1017/S0022112077001037
[28] Van Simaeys, G.; Emplit, P.; Haelterman, M., Experimental demonstration of the Fermi-Pasta-Ulam recurrence in a modulationally unstable optical wave, Phys. Rev. Lett., 87, 3, 33902 (2001) · doi:10.1103/PhysRevLett.87.033902
[29] Scott, M. M.; Kalinikos, B. A.; Patton, C. E., Spatial recurrence for nonlinear magnetostatic wave excitations, J. Appl. Phys., 94, 9, 5877-5880 (2003) · doi:10.1063/1.1615297
[30] Wu, M.; Patton, C. E., Experimental observation of Fermi-Pasta-Ulam recurrence in a nonlinear feedback ring system, Phys. Rev. Lett., 98, 4, 047202 (2007) · doi:10.1103/PhysRevLett.98.047202
[31] Pierangeli, D.; Flammini, M.; Zhang, L.; Marcucci, G.; Agranat, A.; Grinevich, P.; Santini, P.; Conti, C.; DelRe, E., Observation of Fermi-Pasta-Ulam-Tsingou recurrence and its exact dynamics, Phys. Rev. X, 8, 4, 041017 (2018) · doi:10.1103/PhysRevX.8.041017
[32] Sholl, D. S., Modal coupling in one-dimensional anharmonic lattices, Phys. Lett. A, 149, 5-6, 253-257 (1990) · doi:10.1016/0375-9601(90)90424-M
[33] Ablowitz, M. and Segur, H., Solitons and the Inverse Scattering Transform (Society for Industrial and Applied Mathematics, 1981). · Zbl 0472.35002
[34] Osborne, A. R.; Bergamasco, L., The solitons of Zabusky and Kruskal revisited: Perspective in terms of the periodic spectral transform, Physica D, 18, 1-3, 26-46 (1986) · Zbl 0601.35101 · doi:10.1016/0167-2789(86)90160-0
[35] Wedding, B.; Jäger, D., Quantitative study of recurrence in Korteweg de Vries systems, J. Appl. Phys., 53, 8, 5377-5381 (1982) · doi:10.1063/1.331465
[36] Laskar, J.; Robutel, P., High order symplectic integrators for perturbed Hamiltonian systems, Celestial Mech. Dyn. Astron., 80, 39-62 (2001) · Zbl 1013.70002 · doi:10.1023/A:1012098603882
[37] Toda, M., Studies of a non-linear lattice, Phys. Rep., 18, 1, 1-123 (1975) · doi:10.1016/0370-1573(75)90018-6
[38] Lin, C. Y.; Cho, S. N.; Goedde, C. G.; Lichter, S., When is a one-dimensional lattice small?, Phys. Rev. Lett., 82, 2, 259-262 (1999) · doi:10.1103/PhysRevLett.82.259
[39] Salupere, A.; Maugin, G. A.; Engelbrecht, J.; Kalda, J., On the KdV soliton formation and discrete spectral analysis, Wave Motion, 23, 1, 49-66 (1996) · Zbl 0968.76524 · doi:10.1016/0165-2125(95)00040-2
[40] Zabusky, N. J., “A synergetic approach to problems of nonlinear dispersive wave propagation and interaction,” in Nonlinear Partial Differential Equations (Academic Press, 1967), pp. 223-258. · Zbl 0183.18104
[41] Fornberg, B., Generation of finite difference formulas on arbitrarily spaced grids, Math. Comput., 51, 184, 699-699 (1988) · Zbl 0701.65014 · doi:10.1090/S0025-5718-1988-0935077-0
[42] Perelman, T. L.; Fridman, A. K.; El’Yashevich, M. M., On the relationship between the N-soliton solution of the modified Korteweg-de Vries equation and the KdV equation solution, Phys. Lett. A, 47, 4, 321-323 (1974) · doi:10.1016/0375-9601(74)90185-6
[43] Gardner, L. R. T.; Gardner, G. A.; Geyikli, T., Solitary wave solutions of the MKdV \(<mml:math display=''inline`` overflow=''scroll``>\) equation, Comput. Methods Appl. Mech. Eng., 124, 4, 321-333 (1995) · Zbl 0945.65520 · doi:10.1016/0045-7825(94)00755-C
[44] Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math., 21, 5, 467-490 (1968) · Zbl 0162.41103 · doi:10.1002/cpa.3160210503
[45] Aktosun, T., Inverse Scattering Transform and the Theory of Solitons, 771-782 (2011)
[46] Wadati, M., The exact solution of the modified Korteweg-de Vries equation, J. Phys. Soc. Jpn., 32, 6, 1681 (1972) · doi:10.1143/JPSJ.32.1681
[47] Lamb, G. L., Elements of Soliton Theory (1980) · Zbl 0445.35001
[48] Miura, R. M., Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys., 9, 8, 1202-1204 (1968) · Zbl 0283.35018 · doi:10.1063/1.1664700
[49] Bender, C. M., Introduction to \(<mml:math display=''inline`` overflow=''scroll``> \)-symmetric quantum theory, Contemp. Phys., 46, 4, 277-292 (2005) · doi:10.1080/00107500072632
[50] Bender, C. M., PT Symmetry: In Quantum and Classical Physics (2019)
[51] Wadati, M., Construction of parity-time symmetric potential through the soliton theory, J. Phys. Soc. Jpn., 77, 7, 074005 (2008) · doi:10.1143/JPSJ.77.074005
[52] Znojil, M., \( <mml:math display=''inline`` overflow=''scroll``> \)-symmetric harmonic oscillators, Phys. Lett. A, 259, 3-4, 220-223 (1999) · Zbl 0948.81535 · doi:10.1016/S0375-9601(99)00429-6
[53] Benettin, G., Carati, A., Galgani, L., and Giorgilli, A., The Fermi Pasta Ulam Problem and the Metastability Perspective, Lecture Notes in Physics (Springer Verlag, Berlin, 2008), Vol. 728, p. 151. · Zbl 1151.82003
[54] Livi, R.; Ruffo, S., Equipartition Transition and Lyapunov Exponents in Closed Hamiltonian Systems, 113-123 (1992)
[55] Lvov, Y. V.; Onorato, M., Double scaling in the relaxation time in the \(<mml:math display=''inline`` overflow=''scroll``> \)-Fermi-Pasta-Ulam-Tsingou model, Phys. Rev. Lett., 120, 14, 144301 (2018) · doi:10.1103/PhysRevLett.120.144301
[56] Benettin, G.; Galgani, L.; Giorgilli, A., A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems, Celestial Mech., 37, 1-25 (1985) · Zbl 0602.58022 · doi:10.1007/BF01230338
[57] Rink, B., Symmetry and resonance in periodic FPU chains, Commun. Math. Phys., 218, 665-685 (2001) · Zbl 0997.37057 · doi:10.1007/s002200100428
[58] Flach, S.; Ivanchenko, M. V.; Kanakov, O. I., q-Breathers in Fermi-Pasta-Ulam chains: Existence, localization, and stability, Phys. Rev. E, 73, 3, 1-14 (2006) · doi:10.1103/PhysRevE.73.036618
[59] Penati, T.; Flach, S., Tail resonances of Fermi-Pasta-Ulam q-breathers and their impact on the pathway to equipartition, Chaos, 17, 2, 023102 (2007) · Zbl 1159.37379 · doi:10.1063/1.2645141
[60] Flach, S.; Ivanchenko, M. V.; Kanakov, O. I.; Mishagin, K. G., Periodic orbits, localization in normal mode space, and the Fermi-Pasta-Ulam problem, Am. J. Phys., 76, 4, 453-459 (2008) · doi:10.1119/1.2820396
[61] Christodoulidi, H.; Efthymiopoulos, C., Low-dimensional q-tori in FPU lattices: Dynamics and localization properties, Physica D, 261, 92-113 (2013) · Zbl 1336.37058 · doi:10.1016/j.physd.2013.07.007
[62] Livi, R.; Pettini, M.; Ruffo, S.; Sparpaglione, M.; Vulpiani, A., Equipartition threshold in nonlinear large Hamiltonian systems: The Fermi-Pasta-Ulam model, Phys. Rev. A, 31, 2, 1039-1045 (1985) · doi:10.1103/PhysRevA.31.1039
[63] Berchialla, L.; Giorgilli, A.; Paleari, S., Exponentially long times to equipartition in the thermodynamic limit, Phys. Lett. A, 321, 3, 167-172 (2004) · Zbl 1118.81310 · doi:10.1016/j.physleta.2003.11.052
[64] Benettin, G.; Ponno, A., Time-scales to equipartition in the Fermi-Pasta-Ulam problem: Finite-size effects and thermodynamic limit, J. Stat. Phys., 144, 4, 793-812 (2011) · Zbl 1227.82008 · doi:10.1007/s10955-011-0277-9
[65] Danieli, C.; Campbell, D. K.; Flach, S., Intermittent many-body dynamics at equilibrium, Phys. Rev. E, 95, 6, 1-5 (2017) · doi:10.1103/PhysRevE.95.060202
[66] Dauxois, T.; Khomeriki, R.; Piazza, F.; Ruffo, S., The anti-FPU problem, Chaos, 15, 1, 015110 (2005) · Zbl 1080.37078 · doi:10.1063/1.1854273
[67] Chanteur, G.; Raadu, M., Formation of shocklike modified Korteweg-de Vries solitons: Application to double layers, Phys. Fluids, 30, 9, 2708-2719 (1987) · Zbl 0634.76126 · doi:10.1063/1.866036
[68] Ono, H., Algebraic soliton of the modified Korteweg-de Vries equation, J. Phys. Soc. Jpn., 41, 5, 1817-1818 (1976) · Zbl 1334.35294 · doi:10.1143/JPSJ.41.1817
[69] Grosse, H., Solitons of the modified KdV equation, Lett. Math. Phys., 8, 4, 313-319 (1984) · Zbl 0557.35117 · doi:10.1007/BF00400502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.