×

The range and valence of a real Smirnov function. (English) Zbl 1432.30040

Smirnov functions are analytic functions on the open unit disk \(\mathbb{D}\subset \mathbb{C}\) which can be written as the quotient of two bounded analytic functions, where the denominator is an outer function. The class of real Smirnov functions \(N^{+}_{\mathbb{R}}\) is composed by those Smirnov functions which have real boundary values almost everywhere.
In this paper the authors characterize all possible ranges \(\varphi(\mathbb{D})\) and all possible valences \(v_\varphi(\lambda)=\text{card} \{z\in\mathbb{D}: \varphi(z)=\lambda\}\) of functions \(\varphi\in N^{+}_{\mathbb{R}}\) when the valence is finite.
The main result on the range of non-constant functions \(\varphi\in N^{+}_{\mathbb{R}}\) states that \(\varphi(\mathbb{D})\) is either \[ \mathbb{C}_{+}\setminus F \quad\text{or}\quad \mathbb{C}_{-}\setminus G \quad\text{or}\quad \mathbb{C}\setminus (F\cup G \cup E), \] where \(\mathbb{C}_{+}\) and \(\mathbb{C}_{-}\) denote the upper and the lower open half planes, respectively, \( E\subsetneq \mathbb{R}\) is a closed set and \(F \subseteq \mathbb{C}_{+}\), \(G \subseteq \mathbb{C}_{-}\) are relatively closed sets of logarithmic capacity zero. Conversely, given any sets \(E, F\) and \(G\) satisfying the above conditions, there exist functions in \(N^{+}_{\mathbb{R}}\) with ranges \(\mathbb{C}_{+}\setminus F\), \(\mathbb{C}_{-}\setminus G\) and \(\mathbb{C}\setminus (F\cup G \cup E)\).
The main result on valences states that the valence of every \(\varphi\in N^{+}_{\mathbb{R}}\) with finite valence is given by the valence of a plane valence tree. Moreover, any valence arising from a plane valence tree is the valence of a real Smirnov function.

MSC:

30H15 Nevanlinna spaces and Smirnov spaces
30J05 Inner functions of one complex variable
30H10 Hardy spaces
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators

References:

[1] Ahlfors, L.V., Sario, L.: Riemann Surfaces. Princeton Mathematical Series, No. 26. Princeton University Press, Princeton (1960) · Zbl 0196.33801
[2] Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space, vol. II. Translated from the Russian by Merlynd Nestell. Frederick Ungar Publishing Co., New York (1963)
[3] Aleman, A., Martin, R.T.W., Ross, W.T.: On a theorem of livsic. J. Funct. Anal. 264(4), 999-1048 (2013) · Zbl 1275.47028 · doi:10.1016/j.jfa.2012.11.015
[4] Cartwright, M.L.: Some inequalities in the theory of functions. Math. Ann. 111(1), 98-118 (1935) · JFM 61.0351.02 · doi:10.1007/BF01472208
[5] Cima, J.A., Ross, W.T.: The Backward Shift on the Hardy Space. Mathematical Surveys and Monographs, vol. 79. American Mathematical Society, Providence (2000) · Zbl 0952.47029
[6] Collingwood, E.F., Lohwater, A.J.: The Theory of Cluster Sets. Cambridge University Press, Cambridge (1966) · Zbl 0149.03003 · doi:10.1017/CBO9780511566134
[7] Colwell, P.: Blaschke Products. University of Michigan Press, Ann Arbor (1985) (Bounded analytic functions)
[8] Conway, J,B.: Functions of One Complex Variable. II, volume 159 of Graduate Texts in Mathematics. Springer, New York (1995) · Zbl 0887.30003
[9] Douglas, R.G., Shapiro, H.S., Shields, A.L.: Cyclic vectors and invariant subspaces for the backward shift operator. Ann. Inst. Fourier (Grenoble) 20(fasc.1), 37-76 (1970) · Zbl 0186.45302 · doi:10.5802/aif.338
[10] Duren, P.L.: Theory of \[{H}^p\] Hp Spaces. Academic Press, New York (1970) · Zbl 0215.20203
[11] Fisher, S.D.: Function theory on planar domains. In: Pure and Applied Mathematics (New York). Wiley, New York (1983). A second course in complex analysis, A Wiley-Interscience Publication · Zbl 0511.30022
[12] Garcia, S., Mashreghi, J., Ross, W.: Finite Blaschke Products and Their Connections. Monographs in Mathematics. Springer, New York (2019)
[13] Garcia, S.R., Mashreghi, J., Ross, W.T.: Introduction to Model Spaces and Their Operators, volume 148 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2016) · Zbl 1361.30001
[14] Garcia, S.R., Mashreghi, J., Ross, W.T.: Real complex functions. In: Recent Progress on Operator Theory and Approximation in Spaces of Analytic Functions, volume 679 of Contemp. Math., pp. 91-128. Am. Math. Soc., Providence, RI (2016) · Zbl 1375.30083
[15] Garcia, S.R., Sarason, D.: Real outer functions. Indiana Univ. Math. J. 52(6), 1397-1412 (2003) · Zbl 1062.30062 · doi:10.1512/iumj.2003.52.2511
[16] Garnett, J.B.: Bounded Analytic Functions, volume 236 of Graduate Texts in Mathematics (first edition). Springer, New York (2007) · Zbl 0469.30024
[17] Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) · Zbl 1044.55001
[18] Hayman, W.K.: Multivalent Functions, volume 110 of Cambridge Tracts in Mathematics (second edition). Cambridge University Press, Cambridge (1994) · Zbl 0904.30001
[19] Helson, H.: Large analytic functions. In: Linear Operators in Function Spaces (Timişoara, 1988), volume 43 of Oper. Theory Adv. Appl., pp. 209-216. Birkhäuser, Basel (1990) · Zbl 0692.30031
[20] Helson, H.: Large analytic functions. II. In: Analysis and Partial Differential Equations, volume 122 of Lecture Notes in Pure and Appl. Math., pp. 217-220. Dekker, New York (1990) · Zbl 0741.30028
[21] Mashreghi, J: Derivatives of Inner Functions, volume 31 of Fields Institute Monographs. Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON (2013) · Zbl 1276.30005
[22] Poltoratski, A.G.: Properties of exposed points in the unit ball of \[H^1\] H1. Indiana Univ. Math. J. 50(4), 1789-1806 (2001) · Zbl 1040.30017 · doi:10.1512/iumj.2001.50.2052
[23] Ransford, T.: Potential Theory in the Complex Plane. London Mathematical Society Student Texts, vol. 28. Cambridge University Press, Cambridge (1995) · Zbl 0828.31001 · doi:10.1017/CBO9780511623776
[24] Ross, W.T., Shapiro, H.S.: Generalized Analytic Continuation. University Lecture Series, vol. 25. American Mathematical Society, Providence (2002) · Zbl 1009.30002
[25] Rudin, Walter: A generalization of a theorem of Frostman. Math. Scand. 21(136-143), 1967 (1968) · Zbl 0185.33301
[26] Sarason, D.: Unbounded Toeplitz operators. Integral Equ. Oper. Theory 61(2), 281-298 (2008) · Zbl 1155.47033 · doi:10.1007/s00020-008-1588-3
[27] Stephenson, K.: The finite range of an inner function. Bull. Lond. Math. Soc. 11(3), 300-303 (1979) · Zbl 0442.30027 · doi:10.1112/blms/11.3.300
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.