Numerically trivial automorphisms of Enriques surfaces in characteristic 2. (English) Zbl 1432.14032
Let \(S\) be an Enriques surface over an algebraically closed field \(k\) of characteristic \(p\ge 0\). An automorphism of \(S\) is called cohomologically trivial (resp. numerically trivial) if it acts identically on \(\mathrm{NS}(S)\) (resp. on \(\mathrm{Num}(S)=\mathrm{NS}(S)/\langle K_S\rangle\)). The groups of such automorphisms are denoted by \(\mathrm{Aut}_{\operatorname{ct}}(S)\) and \(\mathrm{Aut}_{\operatorname{nt}}(S)\), respectively. A complete classification of the possible groups of cohomologically or numerically trivial automorphisms on complex Enriques surfaces is due to S. Mukai [Kyoto J. Math. 50, No. 4, 889–902 (2010; Zbl 1207.14038); with Y. Namikawa, Invent. Math. 77, 383–397 (1984; Zbl 0559.14038)].
The present paper extends such results to algebraically closed fields of any characteristic \(p\ge 0\). In particular, the authors prove the following assertions.
If \(p\ne 2\), then the main result of Mukai and Namikawa still holds: \(\mathrm{Aut}_{\operatorname{ct}}(S)\) has order \(\le 2\), while \(\mathrm{Aut}_{\operatorname{nt}}(S)\cong \mathbb{Z}/2^a\mathbb{Z}\) for some \(a\le 2\).
If \(p=2\) and \(K_S\ne 0\) (\(S\) is classical), then \(\mathrm{Aut}_{\operatorname{ct}}(S)\) has order \(\le 2\) and \(\mathrm{Aut}_{\operatorname{nt}}(S)\cong (\mathbb{Z}/2\mathbb{Z})^a\) for some \(a\le 2\), unless \(S\) has a configuration of \((-2)\)-curves of type \(\widetilde{E}_8\).
If \(p=2\) and \(K_S=0\), then \(\mathrm{Aut}_{\operatorname{ct}}(S)=\mathrm{Aut}_{\operatorname{nt}}(S)\) has order \(\le 2\), unless \(S\) is supersingular with one of five types of exceptional configurations of \((-2)\)-curves.
The main tool of the proof are bielliptic maps. They are maps \(S\rightarrow \mathbb{P}^4\) of degree \(2\) onto a weak del Pezzo surface of degree \(4\), and they are induced by the linear systems \(|2F_1+2F_2|\), where \(F_1,F_2\) are half-fibers of genus one fibrations on \(S\) with \(F_1F_2=1\).
The present paper extends such results to algebraically closed fields of any characteristic \(p\ge 0\). In particular, the authors prove the following assertions.
If \(p\ne 2\), then the main result of Mukai and Namikawa still holds: \(\mathrm{Aut}_{\operatorname{ct}}(S)\) has order \(\le 2\), while \(\mathrm{Aut}_{\operatorname{nt}}(S)\cong \mathbb{Z}/2^a\mathbb{Z}\) for some \(a\le 2\).
If \(p=2\) and \(K_S\ne 0\) (\(S\) is classical), then \(\mathrm{Aut}_{\operatorname{ct}}(S)\) has order \(\le 2\) and \(\mathrm{Aut}_{\operatorname{nt}}(S)\cong (\mathbb{Z}/2\mathbb{Z})^a\) for some \(a\le 2\), unless \(S\) has a configuration of \((-2)\)-curves of type \(\widetilde{E}_8\).
If \(p=2\) and \(K_S=0\), then \(\mathrm{Aut}_{\operatorname{ct}}(S)=\mathrm{Aut}_{\operatorname{nt}}(S)\) has order \(\le 2\), unless \(S\) is supersingular with one of five types of exceptional configurations of \((-2)\)-curves.
The main tool of the proof are bielliptic maps. They are maps \(S\rightarrow \mathbb{P}^4\) of degree \(2\) onto a weak del Pezzo surface of degree \(4\), and they are induced by the linear systems \(|2F_1+2F_2|\), where \(F_1,F_2\) are half-fibers of genus one fibrations on \(S\) with \(F_1F_2=1\).
Reviewer: Giacomo Mezzedimi (Hannover)
MSC:
14J28 | \(K3\) surfaces and Enriques surfaces |
14J50 | Automorphisms of surfaces and higher-dimensional varieties |
References:
[1] | M. Artin, Coverings of the Rational Double Points in Characteristic p, In: Complex Analysis and Algebraic Geometry, Iwanami-Shoten, Tokyo, 1977, 11-22. · Zbl 0358.14008 |
[2] | F. Cossec, On the Picard group of Enriques surfaces, Math. Ann., 271 (1985), 577-600. · Zbl 0541.14031 · doi:10.1007/BF01456135 |
[3] | F. Cossec and I. Dolgachev, Enriques surfaces, I, Progress in Math., 76, Birkhäuser Boston, Inc., Boston, MA, 1989. · Zbl 0665.14017 |
[4] | F. Cossec, I. Dolgachev and C. Liedtke, Enriques surfaces, I, new edition in preparation. · Zbl 0665.14017 |
[5] | I. Dolgachev, Numerical trivial automorphisms of Enriques surfaces in arbitrary characteristic, Arithmetic and geometry of K3 surfaces and Calabi-Yau threefold, (eds. R. Lazu, M. Schütt and N. Yui), Fields Inst. Commun., 67, Springer, 2013, 267-283. · Zbl 1307.14062 |
[6] | I. Dolgachev and S. Kondō, Enriques surfaces, II, in preparation. · Zbl 1285.14041 |
[7] | T. Ekedahl and N. I. Shepherd-Barron, On exceptional Enriques surfaces, arXiv:math/0405510. |
[8] | H. Ito, On extremal elliptic surfaces in characteristic 2 and 3, Hiroshima Math. J., 32 (2002), 179-188. · Zbl 1050.14026 · doi:10.32917/hmj/1151007555 |
[9] | T. Katsura, S. Kondo and G. Martin, Classification of Enriques surfaces with finite automorphism group in characteristic 2, math.AG.arXiv:1703.09609. · Zbl 1452.14038 |
[10] | J. Keum, Orders of automorphisms of K3 surfaces, Adv. Math., 303 (2016), 39-87. · Zbl 1375.14125 · doi:10.1016/j.aim.2016.08.014 |
[11] | S. Kondō, Enriques surfaces with finite automorphism group, Japan J. Math., 12 (1986), 192-282. · Zbl 0616.14031 |
[12] | W. Lang, Configurations of singular fibers on rational elliptic surfaces in characteristic two, Special issue in honor of Robin Hartshorne, Comm. in Algebra, 28 (2000), 5813-5836. · Zbl 1017.14014 · doi:10.1080/00927870008827190 |
[13] | W. Lang, Classification of singular fibers on rational elliptic surfaces in characteristic three, Comm. Algebra, 33 (2005), 4533-4566. · Zbl 1085.14033 · doi:10.1080/00927870500274861 |
[14] | D. Lieberman, Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, Fonctions de plusieurs variables complexes, III (Sém. Francois Norguet, 1975-1977), Lecture Notes in Math., 670, Springer, Berlin, 1978, 140-186. · Zbl 0391.32018 |
[15] | Q. Liu, D. Lorenzini and M. Raynaud, Néron models, Lie algebras, and reduction of curves of genus one, Invent. Math., 157 (2004), 455-518. · Zbl 1060.14037 · doi:10.1007/s00222-004-0342-y |
[16] | S. Mukai and Y. Namikawa, Automorphisms of Enriques surfaces which act trivially on the cohomology groups, Invent. Math., 77 (1984), 383-397. · Zbl 0559.14038 · doi:10.1007/BF01388829 |
[17] | S. Mukai, Numerically trivial involutions of Kummer type of an Enriques surface, Kyoto J. Math., 50 (2010), 889-902. · Zbl 1207.14038 · doi:10.1215/0023608X-2010-017 |
[18] | A. Ogus, Supersingular K3 crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978), II, Astérisque, 64, Paris: Société Mathématique de France, 3-86. |
[19] | C. Peters, On automorphisms of compact Kähler surfaces, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff and Noordhoff, Alphen aan den Rijn, Germantown, Md., 1980, 249-267. · Zbl 0444.14009 |
[20] | J. Rizov, Moduli stacks of polarized K3 surfaces in mixed characteristic, Serdica Math. J., 32 (2006), 131-178. · Zbl 1155.14306 |
[21] | J. Silverman, The arithmetic of elliptic curves, Second edition, Graduate Texts in Mathematics, 106, Springer, Dordrecht, 2009. · Zbl 1194.11005 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.