×

Lyapunov spectrum of Markov and Euclid trees. (English) Zbl 1432.11071

Summary: We study the Lyapunov exponents \(\Lambda(x)\) for Markov dynamics as a function of path determined by \(x\in \mathbb{RP}^1\) on a binary planar tree, describing the Markov triples and their ‘tropical’ version-Euclid triples. We show that the corresponding Lyapunov spectrum is \([0, \ln \varphi]\), where \(\varphi\) is the golden ratio, and prove that on the Markov-Hurwitz set \(\mathbb{X}\) of the most irrational numbers the corresponding function \(\Lambda_{\mathbb{X}}\) is monotonically increasing and in the Farey parametrization is convex.

MSC:

11J06 Markov and Lagrange spectra and generalizations
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37E25 Dynamical systems involving maps of trees and graphs

References:

[1] Aigner M 2013 Markov’s Theorem and 100 Years of the Uniqueness Conjecture: a Mathematical Journey from Irrational Numbers to Perfect Matchings (Berlin: Springer) · Zbl 1276.00006 · doi:10.1007/978-3-319-00888-2
[2] Arias-de-Reyna J 2004 Riemann’s fragment on limit values of elliptic modular functions Ramanujan J.8 57-123 · Zbl 1152.11326 · doi:10.1023/B:RAMA.0000027198.90402.a2
[3] Bombieri E 2007 Continued fractions and Markoff tree Expositiones Math.25 187-213 · Zbl 1153.11030 · doi:10.1016/j.exmath.2006.10.002
[4] Bowditch B H 1996 Proof of McShane’s identity via Markoff triples Bull. Lond. Math. Soc.28 73-8 · Zbl 0854.57009 · doi:10.1112/blms/28.1.73
[5] Bourgain J, Gamburd A and Sarnak P 2015 Markoff triples and strong approximation (arXiv:1505.06411v2)
[6] Burger E B 2000 Exploring the Number Jungle: a Journey into Diophantine Analysis vol 8 (Providence, RI: American Mathematical Society) · Zbl 0973.11001
[7] Cantat S and Loray F 2009 Holomorphic dynamics, Painlevé VI equation and character varieties Ann. Inst. Fourier59 2927-78 · Zbl 1204.34123 · doi:10.5802/aif.2512
[8] Chekhov L O and Penner R C 2007 On quantizing Teichmüller and Thurston theories Handbook of Teichmüller Theory11 579-645 · Zbl 1125.32007 · doi:10.4171/029-1/15
[9] Cohn H 1955 Approach to Markoff’s minimal forms through modular functions Ann. Math.61 112 · Zbl 0064.04303 · doi:10.2307/1969618
[10] Cohn H 1979 Growth types of Fibonacci and Markoff Fibonacci Q.17 178-83 · Zbl 0415.05018
[11] Cornfeld I, Fomin S and Sinai Y 1982 Ergodic Theory (New York: Springer) · Zbl 0493.28007 · doi:10.1007/978-1-4615-6927-5
[12] Cusick T W and Flahive M E 1989 The Markoff and Lagrange spectra vol 30 (Providence, RI: American Mathematical Society) · Zbl 0685.10023 · doi:10.1090/surv/030
[13] Delone B N 2005 The St. Petersbourg School of Number Theory(History of Mathematics vol 27) (Providence, RI: American Mathematical Society) · Zbl 1074.11002 · doi:10.1090/hmath/026
[14] Dubrovin B 1996 Geometry of 2D topological field theories Integrable Systems and Quantum Groups(Lecture Notes in Math vol 1620) (Berlin: Springer) pp 120-348 · Zbl 0841.58065 · doi:10.1007/BFb0094793
[15] Fock V V 1997 Dual Teichmueller spaces (arXiv:dg-ga/9702018v3)
[16] Fricke R 1896 Über die Theorie der automorphen Modulgruppen Nachr. Ges. Wiss. Göttingen1896 91-101 · JFM 27.0326.02
[17] Frobenius G 1913 Über die Markoffschen Zahlen(Sitzungsberichte der Königlich Preußischen Akadamie der Wissenschaften zu Berlin) pp 458-87 · JFM 44.0255.01
[18] Goldman W 2003 The modular group action on real characters of one-holed torus Geom. Topol.7 443-86 · Zbl 1037.57001 · doi:10.2140/gt.2003.7.443
[19] Gorshkov D S 1953 Geometry of Lobachevskii in connection with certain questions of arithmetic PhD Thesis (in Russian)
[20] Gorshkov D S 1981 Geometry of Lobachevskii in connection with certain questions of arithmetic J. Sov. Math.16 788-820 English transl. · Zbl 0453.10032 · doi:10.1007/BF01213890
[21] Gromov M, Lafontaine J and Pansu P 1981 Structures Mètriques Pour les Variètès Riemanniennes (Paris: CEDIC) pp 50-1 · Zbl 0509.53034
[22] Hensley D 1989 The Hausdorff dimensions of some continued fraction Cantor sets J. Number Theory33 182-98 · Zbl 0689.10060 · doi:10.1016/0022-314X(89)90005-X
[23] Hurwitz A 1891 Über die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche Math. Ann.39 279-84 · JFM 23.0222.02 · doi:10.1007/BF01206656
[24] Hatcher A Topology of Numbers www.math.cornell.edu/ hatcher/TN/TNbook.pdf
[25] Iwasaki K and Uehara T 2007 An ergodic study of Painlevé VI Math. Ann.338 295-345 · Zbl 1136.34067 · doi:10.1007/s00208-006-0077-8
[26] Khintchine A 1964 Continued Fractions (New York: Dover) · Zbl 0117.28601
[27] Lax P D 2007 Linear Algebra and its Applications (New York: Wiley) · Zbl 1152.15001
[28] LeVeque W J 1996 Fundamentals of Number Theory (New York: Dover) · Zbl 1141.11300
[29] Lévy P 1936 Sur le développement en fraction continue d’un nombre choisi au hasard Compos. Math.3 286-303 · JFM 62.0246.01
[30] Lisovyy O and Tykhyy Y 2014 Algebraic solutions of the sixth Painlevé equation J. Geom. Phys.85 124-63 · Zbl 1307.34135 · doi:10.1016/j.geomphys.2014.05.010
[31] Markov A A 1879 Sur les formes quadratiques binaires indéfinies Math. Ann.15 381-406 · JFM 11.0147.01 · doi:10.1007/BF02086269
[32] Markov A A 1880 Sur les formes quadratiques binaires indéfinies Math. Ann.17 379-99 · JFM 12.0143.02 · doi:10.1007/BF01446234
[33] McShane G and Rivin I 1995 Simple curves on hyperbolic tori C. R. Acad. Sci. Paris Sér. I. Math.320 1523-28 · Zbl 0835.53050
[34] Minkowski H 1904 Zur Geometrie der Zahlen Verhandlungen des III. Internationalen Mathematiker-Kongresses in Heidelberg pp 164-73
[35] Mordell L J 1953 On the integer solutions of the equation x2+y2+z2+2xyz=n. J. Lond. Math. Soc.28 500-10 · Zbl 0051.27802 · doi:10.1112/jlms/s1-28.4.500
[36] Salem R 1943 On some singular monotonic functions which are strictly increasing Trans. Am. Math. Soc.53 427-39 · Zbl 0060.13709 · doi:10.1090/S0002-9947-1943-0007929-6
[37] Series C 1985 The geometry of Markoff numbers Math. Intelligencer7 20-9 · Zbl 0566.10024 · doi:10.1007/BF03025802
[38] Sorrentino A and Veselov A P Markov numbers, Mather’s β-function and stable norm (arXiv: 1707.03901) · Zbl 1431.37051
[39] Viader P, Paradís J and Bibiloni L 1998 A new light on Minkowski’s ?(x) function J. Number Theory73 212-27 · Zbl 0928.11006 · doi:10.1006/jnth.1998.2294
[40] Rudakov A N 1988 The Markov numbers and exceptional bundles on P2 Izv. Akad. Nauk SSSR Ser. Mat.52 100-12 · Zbl 0661.14017
[41] Veselov A P 2007 Yang-Baxter maps: dynamical point of view MSJ Mem.17 145-67 · Zbl 1232.81023 · doi:10.2969/msjmemoirs/01701c060
[42] Veselov A P 2009 Yang-Baxter and braid dynamics GADUDIS Conf. (Glasgow) www.newton.ac.uk/files/seminar/20090401093010159-152138.pdf
[43] Zagier D 1982 On the number of Markoff numbers below a given bound Math. Comput.39 709-23 · Zbl 0501.10015 · doi:10.1090/S0025-5718-1982-0669663-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.