×

Involutions on surfaces. (English) Zbl 1431.57026

This paper classifies all involutions on closed surfaces \(X\) up to isomorphism. The term involution means a map \(f: X \rightarrow X\) such that \(f^2 = id_X\). Suppose two involutions \(f\) and \(g\) are acting on \(X\) and there is a homeomorphism \(h: X \rightarrow X\). If \(h \circ f \circ h^{-1} = g\), then we say \(f\) and \(g\) are equivalent involutions or equivalent. In other words, \(f\) and \(g\) are in the same isomorphism class.
Significant reference sources are the works of T. Asoh [Hiroshima Math. J. 6, 171–181 (1976; Zbl 0332.57021)], J. Nielsen [Math.-Fys. Medd., Danske Vid. Selsk. 15, No. 1, 1–77 (1937; Zbl 0017.13302)], S. M. Natanzon [Russ. Math. Surv. 41, No. 5, 159–160 (1987; Zbl 0637.30040); translation from Usp. Mat. Nauk 41, No. 5(251), 191–192 (1986), correction ibid. 42, No. 2(254), 283 (1986); Russ. Math. Surv. 45, No. 6, 53–108 (1990; Zbl 0734.30037); translation from Usp. Mat. Nauk 45, No. 6(276), 47–90 (1990)], W. Scherrer [Comment. Math. Helv. 1, 69–119 (1929; JFM 55.0312.01)], P. A. Smith [Mich. Math. J. 14, 257–275 (1967; Zbl 0153.25402)], and E. Bujalance et al. [Math. Z. 211, No. 3, 461–478 (1992; Zbl 0758.30036)]. The case of orientable surfaces has been studied, which includes paper by F. Klein [Math. Ann. 42, 1–29 (1893; JFM 25.0689.03)]. However, the non-orientable case is much more complicated. In this sense, the author of this paper presents all results in an organized manner.
Let \(T_g\) denote the closed orientable surface of genus \(g\), and let \(N_r\) denote the connected sum of \(r\) copies of the projective planes \(\mathbb R \mathbb P^2\). Then, the following two statements are the main results of this article. Note that the number of the isomorphism classes includes the trivial map.
Theorem. The number of isomorphism classes of \(\mathbb Z_2\)-actions on \(T_g\) is equal to \(4 + 2g\).
Theorem. The number of isomorphism classes of \(\mathbb Z_2\)-actions on \(N_r\) is given by the following formulas:
\(\bullet\) if \(r \equiv 1 \pmod{4}\), then \(\frac{1}{64}(r^3 +9r^2+27r+91)\),
\(\bullet\) if \(r \equiv 3 \pmod{4}\), then \(\frac{1}{64}(r^3 +9r^2+23r+79)\),
\(\bullet\) if \(r \equiv 0 \pmod{4}\), then \(\frac{1}{64}(r^3 +18r^2+152)\),
\(\bullet\) if \(r \equiv 2 \pmod{4}\), then \(\frac{1}{64}(r^3 +18r^2+156r-8)\).
Consider \(T_0 = \mathbb S^2\), the two-sphere, since \(g = 0\). By the first theorem, there are four isomorphism classes of \(\mathbb Z_2\) on \(T_0 \). The four maps are: the identity, a \(180^\circ\)-rotation, the reflection at the “equator” line, and the antipodal map.
Consider \(N_1 = \mathbb R \mathbb P^2\). By the second theorem, there are two isomorphism classes of \(\mathbb Z_2\) on \(N_1\). These are: the identity and a \(180^\circ\)-rotation.
Note that the lifts of each map on \(N_1 = \mathbb R \mathbb P^2\) are shown the four isomorphism classes on \(T_0 = \mathbb S^2\). The identity and the antipodal maps on \(T_0 = \mathbb S^2\) both induce the trivial map on \(N_1 = \mathbb R \mathbb P^2\). However, the \(180^\circ\)-rotation and the reflection at the “equator” line induce a \(180^\circ\)-rotation on \(N_1 = \mathbb R \mathbb P^2\). J. Kalliongis and R. Ohashi discuss related topics in [Ars Math. Contemp. 15, No. 2, 297–321 (2018; Zbl 1414.57011)].

MSC:

57M60 Group actions on manifolds and cell complexes in low dimensions
55M35 Finite groups of transformations in algebraic topology (including Smith theory)

References:

[1] Asoh, T.: Classification of free involutions on surfaces. Hiroshima Math. J. 6, 171-181 (1976) · Zbl 0332.57021 · doi:10.32917/hmj/1206136456
[2] Broughton, S.A.: Classifying finite group actions on surfaces of low genus. J. Pure Appl. Algebra 69(3), 233-270 (1991) · Zbl 0722.57005 · doi:10.1016/0022-4049(91)90021-S
[3] Bujalance, E., Cirre, F.J., Gamboa, J.M., Gromadzki, G.: Symmetries of Compact Riemann Surfaces. Lecture Notes in Mathematics, vol. 2007. Springer, Berlin (2010) · Zbl 1208.30002 · doi:10.1007/978-3-642-14828-6
[4] Bujalance, E., Costa, A.F., Natanzon, S.M., Singerman, D.: Involutions of compact Klein surfaces. Math. Z. 211, 461-478 (1992) · Zbl 0758.30036 · doi:10.1007/BF02571439
[5] Costa, A.F., Parlier, H.: On Harnack’s theorem and extensions: a geometric proof and applications. Conform. Geom. Dyn. 12, 174-186 (2008) · Zbl 1193.30054 · doi:10.1090/S1088-4173-08-00184-7
[6] Ding, H.: Classification of cyclic group actions on noncompact surfaces. Pacific J. Math. 179(2), 325-341 (1997) · Zbl 0871.57013 · doi:10.2140/pjm.1997.179.325
[7] Dugger, D.: Involutions in the topologists’ orthogonal group (2016). arXiv:1612.08487
[8] Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton (2012) · Zbl 1245.57002
[9] Gilman, J.: Compact Riemann surfaces with conformal involutions. Proc. Am. Math. Soc. 37, 105-107 (1973) · Zbl 0251.32006 · doi:10.1090/S0002-9939-1973-0308390-9
[10] Gilman, J.: On conjugacy classes in the Teichmüller modular group. Michigan Math. J. 23(1), 53-63 (1976) · Zbl 0334.32022 · doi:10.1307/mmj/1029001621
[11] Glover, H., Mislin, G.: Torsion in the mapping class group and its homology. J. Pure Appl. Algebra 44, 177-189 (1987) · Zbl 0617.57005 · doi:10.1016/0022-4049(87)90023-5
[12] Harnack, A.: Über die Vieltheiligkeit der ebenen algebraischen Curven. Math. Ann. 10(2), 189-198 (1876) · JFM 08.0438.01 · doi:10.1007/BF01442458
[13] Harvey, W.J.: On branch loci in Teichmüller space. Trans. Am. Math. Soc. 153, 387-398 (1971) · Zbl 0211.10503
[14] Izquierdo, M., Singerman, D.: On the fixed-point set of automorphisms of non-orientable surfaces without boundary. The Epstein Birthday Schrift, 295-301, Geom. Topol. Monogr. 1, Geom. Topol. Publ., Coventry (1998) · Zbl 0913.20019
[15] Klein, F.: Über Realitätsverhältnisse bei einem beliebigen Geschlechte zugehörigen Normalkurve der \[\phi\] ϕ. Math. Ann. 42, 1-29 (1893) · JFM 25.0689.03 · doi:10.1007/BF01443443
[16] Lickorish, W.B.R.: Homeomorphisms of non-orientable two-manifolds. Proc. Camb. Philos. Soc. 59, 307-317 (1963) · Zbl 0115.40801 · doi:10.1017/S0305004100036926
[17] Lima-Filho, P., dos Santos, P.: Bigraded invariants for real curves. Algebra Geom. Topol. 14(5), 2809-2852 (2014) · Zbl 1307.14081 · doi:10.2140/agt.2014.14.2809
[18] McCarthy, J.D., Pinkall, U.:Representing homology automorphisms of non-orientable surfaces, Max Planck Inst. preprint MPI/SFB 85-11. http://users.math.msu.edu/users/mccarthy/publications/selected.papers.html. Accessed 9 May 2019
[19] Mosher, L., Algom-Kfir, Y.: Mapping class groups, unpublished lecture notes from an MSRI course, Fall (2007). http://andromeda.rutgers.edu/mosher. Accessed 9 May 2019
[20] Natanzon, S.M.: Topological classification of pairs of commuting antiholomorphic involutions of Riemann surfaces. Russ. Math. Surv. 41(5), 159-160 (1986) · Zbl 0637.30040 · doi:10.1070/RM1986v041n05ABEH003444
[21] Natanzon, S.M.: Klein surfaces. Russ. Math. Surv. 45(6), 53-108 (1990) · Zbl 0734.30037 · doi:10.1070/RM1990v045n06ABEH002713
[22] Nielsen, J.: Die Struktur periodischer Transformationen von Flächen. Danske Vid. Selsk. Mat.-Fys. Medd 15(1), 1-77 (1937) · JFM 63.0553.03
[23] Obata, M.: Conformal transformations of compact Riemannian manifolds. Ill. J. Math. 6, 292-295 (1962) · Zbl 0107.15703 · doi:10.1215/ijm/1255632326
[24] Scherrer, W.: Zur Theorie der endlichen Gruppen topologischer Abblidungen von geschlossenen Flächen in sich. Comment. Math. Helv. 1, 60-119 (1929) · JFM 55.0312.01 · doi:10.1007/BF01208359
[25] Smith, P.A.: Abelian actions on 2-manifolds. Michigan J. Math. 14, 257-275 (1967) · Zbl 0153.25402 · doi:10.1307/mmj/1028999776
[26] Taylor, D.E.: The Geometry of the Classical Groups. Heldermann Verlag, Berlin (1992) · Zbl 0767.20001
[27] Weichold, G.: Über symmetrische Riemannsche Flächen und die Periodicitätsmoduln der zugerhörigen Abelschen Normalintegrale erster Gattung. PhD thesis, Diss. Leipzig Schlömilch Z. XXVIII, 321-352 (1883) · JFM 15.0434.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.