×

On Mittag-Leffler \(d\)-orthogonal polynomials. (English) Zbl 1431.42049

Summary: This paper presents a first result of a long-term research project dealing with the construction of \(d\)-orthogonal polynomials with Hahn’s property. We shall show that the latter class could be characterized by expanding a polynomial as a finite sum of first derivatives of the elements of the sequence and we shall explain how this characterization could be used to construct Hahn-classical d-orthogonal polynomials as well. In this paper, we look for solutions of linear combinations of the first derivatives of two consecutive elements of the sequence by considering the derivative operator and Delta (discrete) operator. The resulting polynomials constitute a particular class of Laguerre \(d\)-orthogonal polynomials and a generalization of Mittag-Leffler polynomials, respectively.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
39A10 Additive difference equations

References:

[1] Aptekarev, Ai; Branquinho, A.; Van Assche, W., Multiple orthogonal polynomials for classical weights, Trans. Am. Math. Soc., 355, 10, 3887-3914 (2003) · Zbl 1033.33002 · doi:10.1090/S0002-9947-03-03330-0
[2] Aversú, J., Coussement, J., Van Assche, W.: Some discrete multiple orthogonal polynomials. J. Comput. Appl. Math. 153(1-2), 19-45 (2003) · Zbl 1021.33006
[3] Bateman, H., The polynomial of Mittag-Leffler, Proc. Natl. Acad. Sci. USA, 26, 491-496 (1940) · JFM 66.0325.02 · doi:10.1073/pnas.26.8.491
[4] Ben Cheikh, Y., On obtaining dual sequences via quasi-monomiality, Georgian Math. J., 9, 413-422 (2002) · Zbl 1008.41007
[5] Ben Cheikh, Y., Some results on quasi-monomiality, Appl. Math. Comput., 141, 63-76 (2003) · Zbl 1041.33008
[6] Ben Cheikh, Y.; Ben Romdhane, N., On \(d\)-symmetric classical \(d\)-orthogonal polynomials, J. Comput. Appl. Math., 236, 85-93 (2011) · Zbl 1261.42040 · doi:10.1016/j.cam.2011.03.027
[7] Ben Cheikh, Y.; Ben Romdhane, N., On \(d\)-symmetric \(d\)-orthogonal polynomials of Brenke type, J. Math. Anal. Appl., 416, 735-747 (2014) · Zbl 1307.42023 · doi:10.1016/j.jmaa.2014.02.046
[8] Ben Cheikh, Y.; Douak, K., On the classical \(d\)-orthogonal polynomials defined by certain generating functions. II., Bull. Belg. Math. Soc., 7, 591-605 (2000) · Zbl 1036.33006
[9] Ben Cheikh, Y.; Zeghouani, A., Some discrete \(d\)-orthogonal polynomial sets, J. Comput. Appl. Math., 156, 2-22 (2003) · Zbl 1055.33005 · doi:10.1016/S0377-0427(02)00914-7
[10] Ben Cheikh, Y.; Zeghouani, A., \(d\)-Orthogonality via generating functions, J. Comput. Appl. Math., 199, 253-263 (2007) · Zbl 1119.42009 · doi:10.1016/j.cam.2005.01.051
[11] Douak, K., The relation of the \(d\)-orthogonal polynomials to the Appell polynomials, J. Comput. Appl. Math., 70, 279-295 (1996) · Zbl 0863.33007 · doi:10.1016/0377-0427(95)00211-1
[12] Douak, K.; Maroni, P., Une caractérisation des polynômes \(d\)-orthogonaux classiques, J. Approx. Theory, 82, 177-204 (1995) · Zbl 0849.33004 · doi:10.1006/jath.1995.1074
[13] Johnston, Sj; Jordaan, K., Quasi-orthogonality and real zeros of some \(_2F_2\) and \(_3F_2\) polynomials, Appl. Numer. Math., 90, 1-8 (2015) · Zbl 1326.33012 · doi:10.1016/j.apnum.2014.11.008
[14] Marcellán, F.; Saib, A., Linear combination of \(d\)-orthogonal polynomials, Bull. Malays. Math. Sci. Soc., 42, 2009-2038 (2019) · Zbl 1427.42032 · doi:10.1007/s40840-017-0589-2
[15] Maroni, P., L’orthogonalité et les récurrences de polynômes d’ordre supérieur à deux, Ann. Fac. Sci. Toulouse, 10, 105-139 (1989) · Zbl 0707.42019 · doi:10.5802/afst.672
[16] Saib, A.; Zerouki, E., Some inverse problems for \(d\)-orthogonal polynomials, Mediterr. J. Math., 10, 865-885 (2013) · Zbl 1267.42030 · doi:10.1007/s00009-012-0225-1
[17] Saib, A., On semi-classical \(d\)-orthogonal polynomials, Math. Nachr., 286, 1863-1885 (2013) · Zbl 1432.33010 · doi:10.1002/mana.201200176
[18] Saib, A.: Some new perspectives on \(d\)-orthogonal polynomials, arXiv:1605.00049 · Zbl 1432.33010
[19] Srivastava, H.M., Manocha, H.L.: A teatise on generating functions.Halset Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York (1985) · Zbl 0552.33001
[20] Assche, Walter Van; Coussement, Els, Some classical multiple orthogonal polynomials, Journal of Computational and Applied Mathematics, 127, 1-2, 317-347 (2001) · Zbl 0969.33005 · doi:10.1016/S0377-0427(00)00503-3
[21] Varma, S.; Tasdelen, F., On a different kind of \(d\)-orthogonal polynomials that generalize the Laguerre polynomials, Math. Aeterna, 2, 561-572 (2012) · Zbl 1291.33013
[22] Zaghouani, A., Some basic \(d\)-orthogonal polynomial sets, Georgian Math. J., 12, 583-593 (2005) · Zbl 1091.42020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.