×

Variational problems of Herglotz type with complex order fractional derivatives and less regular Lagrangian. (English) Zbl 1431.26006

Summary: We derive optimality conditions for variational problems of Herglotz type whose Lagrangian depends on fractional derivatives of both real and complex order, and resolve the case of subdomain when the lower bounds of variational integral and fractional derivatives differ. Moreover, we consider a problem of the Herglotz type that corresponds to the case when the Lagrangian depends on the fractional derivative of the action and give an example of the problem that corresponds to the oscillator with a memory. Since our assumptions on the Lagrangian are weaker than in the classical theory, we analyze generalized Euler-Lagrange equations by the use of weak derivatives and the appropriate technics of distribution theory. Such an example is discussed in detail.

MSC:

26A33 Fractional derivatives and integrals
49K05 Optimality conditions for free problems in one independent variable
34A08 Fractional ordinary differential equations
Full Text: DOI

References:

[1] Almeida, R., Malinowska, A.B.: Fractional variational principle of Herglotz. Discrete Contin. Dyn. Syst. Ser. B 19(8), 2367-2381 (2014) · Zbl 1304.49040 · doi:10.3934/dcdsb.2014.19.2367
[2] Atanacković, T.M., Janev, M., Pilipović, S., Zorica, D.: Euler-Lagrange equations for Lagrangians containing complex order fractional derivatives. J. Optim. Theory Appl. 174(1), 256-275 (2017) · Zbl 1378.49015 · doi:10.1007/s10957-016-0873-6
[3] Atanacković, T.M., Konjik, S., Pilipović, S.: Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A Math. Theor. 41(9), 095201-095213 (2008) · Zbl 1175.49020 · doi:10.1088/1751-8113/41/9/095201
[4] Atanacković, T.M., Konjik, S., Pilipović, S., Zorica, D.: Complex order fractional derivatives in viscoelasticity. Mech. Time Depend. Mater. 20(2), 175-195 (2016) · doi:10.1007/s11043-016-9290-3
[5] Bourdin, L., Idczak, D.: A fractional fundamental lemma and a fractional integration by parts formula—applications to critical points of Bolza functionals and to linear boundary value problems. Adv. Differ. Equ. 20(3-4), 213-232 (2015) · Zbl 1309.26007
[6] Cislo, J., Lopuszariski, J.T., Stichel, P.C.: On the inverse variational problem in classical mechanics. In: Rernbielinski, J. (ed.) Particles, Fields and Gravitation. AIP Conference Proceedings/High Energy Physics, vol. 453, pp. 219-225. American Institute of Physics (1998) · Zbl 1009.70015
[7] Garra, R., Taverna, G.S., Torres, D.F.M.: Fractional Herglotz variational principles with generalized Caputo derivatives. Chaos Solitons Fractals 102, 94-98 (2017) · Zbl 1374.49039 · doi:10.1016/j.chaos.2017.04.035
[8] Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014) · Zbl 1309.33001 · doi:10.1007/978-3-662-43930-2
[9] Guenther, R.B., Guenther, C.M., Gottsch, J.A.: The Herglotz Lectures on Contact Transformations and Hamiltonian Systems. Lecture Notes in Nonlinear Analysis, vol. 1. Juliusz Schauder Center for Nonlinear Studies, Nicholas Copernicus University, Toruń (1995) · Zbl 1085.70002
[10] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[11] Love, E.R.: Fractional derivatives of imaginary order. J. Lond. Math. Soc. 2-3(2), 241-259 (1971) · Zbl 0207.43902 · doi:10.1112/jlms/s2-3.2.241
[12] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives—Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993) · Zbl 0818.26003
[13] Tavares, D., Almeida, R., Torres, D.F.M.: Fractional Herglotz variational problems of variable order. Discrete Contin. Dyn. Syst. Ser. S 11, 143-154 (2018) · Zbl 1379.49016
[14] Tian, X., Zhang, Y.: Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales. Acta Mech. 229(9), 3601-3611 (2018) · Zbl 1398.37049 · doi:10.1007/s00707-018-2188-1
[15] Vujanović, B.D., Atanacković, T.M.: An Introduction to Modern Variational Techniques in Mechanics and Engineering. Birkhäuser, Boston (2004) · Zbl 1081.70002 · doi:10.1007/978-0-8176-8162-3
[16] Yang, X.-J.: General Fractional Derivatives: Theory, Methods and Applications. CRC Press, New York (2019) · Zbl 1417.26001 · doi:10.1201/9780429284083
[17] Zhang, Y.: Variational problem of Herglotz type for Birkhoffian system and its Noether’s theorems. Acta Mech. 228(4), 1481-1492 (2017) · Zbl 1401.70028 · doi:10.1007/s00707-016-1758-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.