×

Iterated matched products of finite braces and simplicity; new solutions of the Yang-Baxter equation. (English) Zbl 1431.16035

Summary: Braces were introduced by Rump as a promising tool in the study of the set-theoretic solutions of the Yang-Baxter equation. It has been recently proved that, given a left brace \( B\), one can construct explicitly all the non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation such that the associated permutation group is isomorphic, as a left brace, to \( B\). It is hence of fundamental importance to describe all simple objects in the class of finite left braces. In this paper we focus on the matched product decompositions of an arbitrary finite left brace. This is used to construct new families of finite simple left braces.

MSC:

16T25 Yang-Baxter equations
20E22 Extensions, wreath products, and other compositions of groups
20F16 Solvable groups, supersolvable groups

References:

[1] Bachiller, David, Classification of braces of order \(p^3\), J. Pure Appl. Algebra, 219, 8, 3568-3603 (2015) · Zbl 1312.81099 · doi:10.1016/j.jpaa.2014.12.013
[2] Bachiller, David, Counterexample to a conjecture about braces, J. Algebra, 453, 160-176 (2016) · Zbl 1338.16022 · doi:10.1016/j.jalgebra.2016.01.011
[3] B3 D. Bachiller, Extensions, matched products and simple braces, J. Pure Appl. Algebra (2017).
[4] Bachiller, David; Ced\'o, Ferran; Jespers, Eric, Solutions of the Yang-Baxter equation associated with a left brace, J. Algebra, 463, 80-102 (2016) · Zbl 1348.16027 · doi:10.1016/j.jalgebra.2016.05.024
[5] BenDavid N. Ben David, On groups of central type and involutive Yang-Baxter groups: a cohomological approach, Ph.D. thesis, The Technion-Israel Institute of Technology, Haifa, 2012.
[6] Ben David, Nir; Ginosar, Yuval, On groups of \(I\)-type and involutive Yang-Baxter groups, J. Algebra, 458, 197-206 (2016) · Zbl 1361.16026 · doi:10.1016/j.jalgebra.2016.03.025
[7] Brown, Ken A.; Goodearl, Ken R., Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, x+348 pp. (2002), Birkh\"auser Verlag, Basel · Zbl 1027.17010 · doi:10.1007/978-3-0348-8205-7
[8] Catino, Francesco; Colazzo, Ilaria; Stefanelli, Paola, On regular subgroups of the affine group, Bull. Aust. Math. Soc., 91, 1, 76-85 (2015) · Zbl 1314.20001 · doi:10.1017/S000497271400077X
[9] Catino, Francesco; Colazzo, Ilaria; Stefanelli, Paola, Regular subgroups of the affine group and asymmetric product of radical braces, J. Algebra, 455, 164-182 (2016) · Zbl 1348.20002 · doi:10.1016/j.jalgebra.2016.01.038
[10] Catino, Francesco; Rizzo, Roberto, Regular subgroups of the affine group and radical circle algebras, Bull. Aust. Math. Soc., 79, 1, 103-107 (2009) · Zbl 1184.20001 · doi:10.1017/S0004972708001068
[11] Ced\'o, Ferran; Gateva-Ivanova, T.; Smoktunowicz, A., On the Yang-Baxter equation and left nilpotent left braces, J. Pure Appl. Algebra, 221, 4, 751-756 (2017) · Zbl 1397.16033 · doi:10.1016/j.jpaa.2016.07.014
[12] Ced\'o, Ferran; Jespers, Eric; Okni\'nski, Jan, Retractability of set theoretic solutions of the Yang-Baxter equation, Adv. Math., 224, 6, 2472-2484 (2010) · Zbl 1192.81202 · doi:10.1016/j.aim.2010.02.001
[13] Ced\'o, Ferran; Jespers, Eric; Okni\'nski, Jan, Braces and the Yang-Baxter equation, Comm. Math. Phys., 327, 1, 101-116 (2014) · Zbl 1287.81062 · doi:10.1007/s00220-014-1935-y
[14] Ced\'o, Ferran; Jespers, Eric; del R\'\i o, \'Angel, Involutive Yang-Baxter groups, Trans. Amer. Math. Soc., 362, 5, 2541-2558 (2010) · Zbl 1188.81115 · doi:10.1090/S0002-9947-09-04927-7
[15] Cohn, P. M., Universal algebra, Mathematics and its Applications 6, xv+412 pp. (1981), D. Reidel Publishing Co., Dordrecht-Boston, Mass. · Zbl 0461.08001
[16] Drinfel \(\cprime\) d, V. G., On some unsolved problems in quantum group theory. Quantum groups, Leningrad, 1990, Lecture Notes in Math. 1510, 1-8 (1992), Springer, Berlin · Zbl 0765.17014 · doi:10.1007/BFb0101175
[17] Etingof, Pavel; Schedler, Travis; Soloviev, Alexandre, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J., 100, 2, 169-209 (1999) · Zbl 0969.81030 · doi:10.1215/S0012-7094-99-10007-X
[18] Gateva-Ivanova, Tatiana, A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation, J. Math. Phys., 45, 10, 3828-3858 (2004) · Zbl 1065.16037 · doi:10.1063/1.1788848
[19] Gateva-Ivanova, Tatiana; Cameron, Peter, Multipermutation solutions of the Yang-Baxter equation, Comm. Math. Phys., 309, 3, 583-621 (2012) · Zbl 1247.81211 · doi:10.1007/s00220-011-1394-7
[20] Gateva-Ivanova, Tatiana; Majid, Shahn, Matched pairs approach to set theoretic solutions of the Yang-Baxter equation, J. Algebra, 319, 4, 1462-1529 (2008) · Zbl 1140.16016 · doi:10.1016/j.jalgebra.2007.10.035
[21] Gateva-Ivanova, Tatiana; Van den Bergh, Michel, Semigroups of \(I\)-type, J. Algebra, 206, 1, 97-112 (1998) · Zbl 0944.20049 · doi:10.1006/jabr.1997.7399
[22] GI-braces T. Gateva-Ivanova, Set-theoretic solutions of the Yang-Baxter equation, braces and symmetric groups, preprint arXiv: 1507.02602v2 [math.QA]. · Zbl 1437.16028
[23] Guarnieri, L.; Vendramin, L., Skew braces and the Yang-Baxter equation, Math. Comp., 86, 307, 2519-2534 (2017) · Zbl 1371.16037 · doi:10.1090/mcom/3161
[24] Heged\H us, P\'al, Regular subgroups of the affine group, J. Algebra, 225, 2, 740-742 (2000) · Zbl 0953.20040 · doi:10.1006/jabr.1999.8176
[25] Jespers, Eric; Okni\'nski, Jan, Monoids and groups of \(I\)-type, Algebr. Represent. Theory, 8, 5, 709-729 (2005) · Zbl 1091.20024 · doi:10.1007/s10468-005-0342-7
[26] Jespers, Eric; Okni\'nski, Jan, Noetherian semigroup algebras, Algebra and Applications 7, x+361 pp. (2007), Springer, Dordrecht · Zbl 1135.16001
[27] Kassel, Christian, Quantum groups, Graduate Texts in Mathematics 155, xii+531 pp. (1995), Springer-Verlag, New York · Zbl 0808.17003 · doi:10.1007/978-1-4612-0783-2
[28] Lebed, Victoria; Vendramin, Leandro, Cohomology and extensions of braces, Pacific J. Math., 284, 1, 191-212 (2016) · Zbl 1357.20009 · doi:10.2140/pjm.2016.284.191
[29] Rump, Wolfgang, A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math., 193, 1, 40-55 (2005) · Zbl 1074.81036 · doi:10.1016/j.aim.2004.03.019
[30] Rump, Wolfgang, Modules over braces, Algebra Discrete Math., 2, 127-137 (2006) · Zbl 1164.81328
[31] Rump, Wolfgang, Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra, 307, 1, 153-170 (2007) · Zbl 1115.16022 · doi:10.1016/j.jalgebra.2006.03.040
[32] Rump, Wolfgang, Classification of cyclic braces, J. Pure Appl. Algebra, 209, 3, 671-685 (2007) · Zbl 1170.16031 · doi:10.1016/j.jpaa.2006.07.001
[33] Rump, Wolfgang, Addendum to “Generalized radical rings, unknotted biquandles, and quantum groups” (Colloq. Math. 109 (2007), 85-100) [MR2308827], Colloq. Math., 117, 2, 295-298 (2009) · Zbl 1117.81084
[34] Rump, Wolfgang, Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equation, J. Algebra Appl., 7, 4, 471-490 (2008) · Zbl 1153.81505 · doi:10.1142/S0219498808002904
[35] Rump, Wolfgang, Addendum to “Generalized radical rings, unknotted biquandles, and quantum groups” (Colloq. Math. 109 (2007), 85-100) [MR2308827], Colloq. Math., 117, 2, 295-298 (2009) · Zbl 1117.81084
[36] Rump, Wolfgang, The brace of a classical group, Note Mat., 34, 1, 115-144 (2014) · Zbl 1344.14029
[37] Smokt A. Smoktunowicz, A note on set-theoretic solutions of the Yang-Baxter equation, J. Algebra (2016), http://dx.doi.org/10.1016/j.jalgebra.2016.04.015 · Zbl 1442.16037
[38] Takeuchi, Mitsuhiro, Survey on matched pairs of groups-an elementary approach to the ESS-LYZ theory. Noncommutative geometry and quantum groups, Warsaw, 2001, Banach Center Publ. 61, 305-331 (2003), Polish Acad. Sci. Inst. Math., Warsaw · Zbl 1066.16044 · doi:10.4064/bc61-0-19
[39] Vendramin, L., Extensions of set-theoretic solutions of the Yang-Baxter equation and a conjecture of Gateva-Ivanova, J. Pure Appl. Algebra, 220, 5, 2064-2076 (2016) · Zbl 1337.16028 · doi:10.1016/j.jpaa.2015.10.018
[40] Yang, C. N., Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett., 19, 1312-1315 (1967) · Zbl 0152.46301 · doi:10.1103/PhysRevLett.19.1312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.