×

A structure-based chaotic hashing scheme. (English) Zbl 1430.94076

Summary: We propose a new chaotic keyed hashing scheme based on the structure of the input message. The structure of the message is identified with maps of the appearances of each character throughout the input message. We use a \(2\)-dimensional generalized cat map whose chaotic orbits are used to introduce randomness to the computation of the hash value and hence facilitate uniform sensitivity of the hash value to the input message and the secret key. Our proposed hashing scheme is fast, efficient, and flexible. Empirical results verify the high sensitivity of the proposed hash function to the input message and the secret key. Further simulations presented demonstrate the strong capability of the proposed scheme for confusion, diffusion, and collision resistance. Compared with existing schemes, especially those based on chaotic maps, the proposed scheme is shown to have superior performance.

MSC:

94A60 Cryptography
Full Text: DOI

References:

[1] Silva, J.: An overview of cryptographic hash functions and their uses. GIAC Security Essentials Practical, SANS Institute InfoSec Reading Room.http://www.sans.org/reading-room/whitepapers/vpns/overview-cryptographic-hash-functions-879 (2003). Accessed 23 Sept 2014 · Zbl 1284.94132
[2] FIPS PUB 198-1: The keyed-hash message authentication code (HMAC). National Institute of Standards and Technology. http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final (2008). Accessed 23 Sept 2014 · Zbl 1049.94009
[3] FIPS PUB 186-2: Digital signature standard (DSS). National Institute of Standards and Technology. http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2 (2000). Accessed 23 Sept 2014 · Zbl 1243.93033
[4] Rivest, R.L., Shamir, R.L., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM Proc. 1(2), 120-126 (1978) · Zbl 0368.94005 · doi:10.1145/359340.359342
[5] Sklavos, N., Kitsos, P., Papadomanolakis, K., Koufopavlou, O.: Random number generator architecture and VLSI implementation. In: Proceedings of IEEE International Symposium on Circuits and Systems (IEEE ISCAS 02) Vol. IV, pp. 854-857. IEEE (2002)
[6] Knuth, D.: The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd edn. Addison-Wesley, Reading, MA (1998) · Zbl 0302.68010
[7] Rivest, R.; Menezes, AJ (ed.); Vanstone, SA (ed.), The MD4 message digest algorithm, No. 537, 303-311 (1992), Berlin · Zbl 0800.68418 · doi:10.1007/3-540-38424-3_22
[8] Rivest, R.: The MD5 message-digest algorithm. IETF Network Working Group, RFC 1321 (1992)
[9] FIPS PUB 180-4: Secure Hash Standard (SHS). National Institute of Standards and Technology. http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4 (2012). Accessed 23 Sept 2014 · Zbl 1227.68101
[10] Gilbert, H.; Handschuh, H.; Matsui, M. (ed.); Zuccherato (ed.), Security analysis of SHA-256 and sisters, No. 3006, 175-193 (2004), Berlin · Zbl 1081.94524 · doi:10.1007/978-3-540-24654-1_13
[11] FIPS 180-2: Secure Hash Standard. National Institute of Standards and Technology. http://csrc.nist.gov/publications/fips/fips180-2/fips180-2 (2002). Accessed 23 Sept 2014
[12] Barreto, P., Rijmen, V.: The Whirlpool hashing function.http://www.larc.usp.br/pbarreto/WhirlpoolPage.html (2003). Accessed 23 Sept 2014 · Zbl 1233.94016
[13] Dobbertin, H.: Cryptanalysis of MD4. J. Cryptol. 11(4), 253-271 (1998) · Zbl 0972.94033 · doi:10.1007/s001459900047
[14] Chabaud, F.; Joux, A.; Krawczyk, H. (ed.), Differential collisions in SHA-0, No. 1462, 56-71 (1998), Berlin · Zbl 0938.68036 · doi:10.1007/BFb0055720
[15] Biham, E.; Chen, R.; Joux, A.; Carribault, P.; Lemuet, C.; Jalby, W.; Cramer, R. (ed.), Collisions of SHA-0 and reduced SHA-1, No. 3494, 36-57 (2005), Berlin · Zbl 1137.94337
[16] DeCanniere, C.; Mendel, F.; Rechberger, C.; Adams, C. (ed.); Miri, A. (ed.); Wiener, M. (ed.), Collisions for 70-step SHA-1: on the full cost of collision search, No. 4876, 56-73 (2007), Berlin · Zbl 1154.94387 · doi:10.1007/978-3-540-77360-3_4
[17] Manuel, S.; Peyrin, T.; Nyberg, K. (ed.), Collisions on SHA-0 in one hour, No. 5086, 16-35 (2008), Berlin · Zbl 1154.68405
[18] Wang, X.; Yin, YL; Yu, H.; Shoup, V. (ed.), Finding collisions in the full SHA-1, No. 3621, 17-36 (2005), Berlin · Zbl 1145.94454
[19] Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD. IACR Cryptology ePrint Archive. https://eprint.iacr.org/2004/199 (2004). Accessed 23 Sept 2014
[20] Wang, X.; Yu, H.; Cramer, R. (ed.), How to break MD5 and other hash functions, No. 3494, 19-35 (2005), Berlin · Zbl 1137.94359
[21] Schneier, B.: Cryptanalysis of SHA-1. Schneier on Security Blog. http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html (2005). Accessed 23 Sept 2014
[22] Manuel, S.: Classification and generation of disturbance vectors for collision attacks against SHA-1. Des. Codes Crypt. 59(1-3), 247-263 (2011) · Zbl 1215.94061 · doi:10.1007/s10623-010-9458-9
[23] Mendel, F.; Nad, T.; Schlaffer, M.; Lee, D. (ed.); Wang, X. (ed.), Finding SHA-2 characteristics: searching through a minefield of contradictions, No. 7073, 288-307 (2011), Berlin · Zbl 1227.94056
[24] National Institute of Standards and Technology: Cryptographic Hash Algorithm Competition (2007-2012). http://csrc.nist.gov/groups/ST/hash/sha-3/index.html (2007). Accessed 23 Sept 2014 · Zbl 1221.94069
[25] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak sponge function family: specifications summary. http://keccak.noekeon.org/ (2009). Accessed 23 September 2014
[26] National Institute of Standards and Technology: SHA-3 WINNER. http://csrc.nist.gov/groups/ST/hash/sha-3/winner_sha-3.html (2012). Accessed 23 Sept 2014
[27] Wong, K.W.: A combined chaotic cryptographic and hashing scheme. Phys. Lett. A 307(5), 292-298 (2003) · Zbl 1008.94018 · doi:10.1016/S0375-9601(02)01770-X
[28] Wang, S., Hu, G.: Hash function based on chaotic map lattices. Chaos Interdiscip. J. Nonlinear Sci. 17(2), 023119-023119 (2007) · Zbl 1159.37402 · doi:10.1063/1.2735812
[29] Akhavan, A., Samsudin, A., Akhshani, A.: Hash function based on piecewise nonlinear chaotic map. Chaos Solitons Fractals 42(2), 1046-1053 (2009) · Zbl 1198.94073 · doi:10.1016/j.chaos.2009.02.044
[30] Akhshani, A., Behnia, S., Akhavan, A., Jafarizadeh, M., Abu Hassan, H., Hassan, Z.: Hash function based on hierarchy of 2D piecewise nonlinear chaotic maps. Chaos Soliton Fractals 42(4), 2405-2412 (2009) · Zbl 1185.34141 · doi:10.1016/j.chaos.2009.03.153
[31] Deng, S., Li, Y., Xiao, D.: Analysis and improvement of a chaos-based hash function construction. Commun. Nonlinear Sci. Numer. Simul. 15(5), 1338-1347 (2010) · Zbl 1221.94043 · doi:10.1016/j.cnsns.2009.05.065
[32] Guo, X., Zhang, J.: Keyed one-way hash function construction based on the chaotic dynamic S-Box. Acta Phys. Sin. 55(9), 4442-4449 (2006)
[33] Huang, Z.: A more secure parallel keyed hash function based on chaotic neural network. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3245-3256 (2011) · Zbl 1343.94066 · doi:10.1016/j.cnsns.2010.12.009
[34] Kanso, A., Yahyaoui, H., Al-Mulla, M.: Keyed hash function based on a chaotic map. Inf. Sci. 186(1), 249-264 (2012) · Zbl 1239.94053 · doi:10.1016/j.ins.2011.09.008
[35] Kwok, H., Tang, W.: A chaos-based cryptographic hash function for message authentication. Int. J. Bifurc. Chaos 15(12), 4043-4050 (2005) · Zbl 1096.94031 · doi:10.1142/S0218127405014489
[36] Li, D., Hu, G., Wang, S.: A keyed hash function based on the modified coupled chaotic map lattice. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2579-2587 (2012) · Zbl 1244.94042 · doi:10.1016/j.cnsns.2011.10.030
[37] Li, Y., Deng, S., Xiao, D.: A novel hash algorithm construction based on chaotic neural network. Neural Comput. Appl. 20(1), 133-141 (2011) · doi:10.1007/s00521-010-0432-2
[38] Ren, H., Wang, Y., Xie, Q., Yang, H.: A novel method for one-way hash function construction based on spatiotemporal chaos. Chaos Solitons Fractals 42(4), 2014-2022 (2009) · doi:10.1016/j.chaos.2009.03.168
[39] Wang, Y., Liao, X., Xiao, D., Wong, K.: One-way hash function construction based on 2D coupled map lattices. Inf. Sci. 178(5), 1391-1406 (2008) · Zbl 1134.68023 · doi:10.1016/j.ins.2007.10.008
[40] Xiao, D., Liao, X., Deng, S.: One-way hash function construction based on the chaotic map with changeable-parameter. Chaos Solitons Fractals 24(386), 65-71 (2005) · Zbl 1068.94019 · doi:10.1016/j.chaos.2004.07.003
[41] Xiao, D., Liao, X., Deng, S.: Parallel keyed hash function construction based on chaotic maps. Phys. Lett. A 372(26), 4682-4688 (2008) · Zbl 1221.65357 · doi:10.1016/j.physleta.2008.04.060
[42] Xiao, D., Liao, X., Wang, Y.: Improving the security of a parallel keyed hash function based on chaotic maps. Phys. Lett. A 373(47), 4346-4353 (2009) · Zbl 1234.94069 · doi:10.1016/j.physleta.2009.09.059
[43] Xiao, D., Liao, X., Wang, Y.: Parallel keyed hash function construction based on chaotic neural network. Neurocomputing 72(10), 2288-2296 (2009) · doi:10.1016/j.neucom.2008.12.031
[44] Xiao, D., Shih, F., Liao, X.: A chaos-based hash function with both modification detection and localization capabilities. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2254-2261 (2010) · Zbl 1222.94040 · doi:10.1016/j.cnsns.2009.10.012
[45] Yi, X.: Hash function based on chaotic tent maps. IEEE Trans. Circuits Syst. II 52(6), 354-357 (2005) · doi:10.1109/TCSII.2005.848992
[46] Zhang, J., Wang, X., Zhang, W.: Chaotic keyed hash function based on feedforward-feedback nonlinear digital filter. Phys. Lett. A 362(5), 439-448 (2007) · Zbl 1197.94155 · doi:10.1016/j.physleta.2006.10.052
[47] Zhang, H., Wang, X., Li, Z., Liu, D.: One way hash function construction based on spatiotemporal chaos. Acta Phys. Sin. 54(9), 4006-4011 (2005)
[48] Wang, Y., Wong, K., Xiao, D.: Parallel hash function construction based on coupled map lattices. Commun. Nonlinear Sci. Numer. Simul. 16(7), 2810-2821 (2011) · Zbl 1221.94069 · doi:10.1016/j.cnsns.2010.10.001
[49] Deng, S., Xiao, D., Li, Y., Peng, W.: A novel combined cryptographic and hash algorithm based on chaotic control character. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3889-3900 (2009) · Zbl 1221.94044 · doi:10.1016/j.cnsns.2009.02.020
[50] Luo, Y., Du, M.: One-way hash function construction based on the spatiotemporal chaotic system. Chin. Phys. B 21(6), 060503 (2012) · Zbl 1249.68067 · doi:10.1088/1674-1056/21/6/060503
[51] Li, Y., Xiao, D., Li, H., Deng, S.: Parallel chaotic hash function construction based on cellular neural network. Neural Comput. Appl. 21(7), 1563-1573 (2012) · Zbl 1262.39007 · doi:10.1007/s00521-011-0726-z
[52] Li, Y., Xiao, D., Deng, S.: Keyed hash function based on a dynamic lookup table of functions. Inf. Sci. 214, 56-75 (2012) · doi:10.1016/j.ins.2012.06.001
[53] Kanso, A., Ghebleh, M.: A fast and efficient chaos-based keyed hash function. Commun. Nonlinear Sci. Numer. Simul. 18(1), 109-123 (2013) · Zbl 1277.94028 · doi:10.1016/j.cnsns.2012.06.019
[54] Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Cryptanalysis of dynamic look-up table based chaotic cryptosystems. Phys. Lett. A 326(3), 211-218 (2004) · Zbl 1138.94346 · doi:10.1016/j.physleta.2004.04.018
[55] Arumugam, G., Lakshmi Praba, V., Radhakrishnan, S.: Study of chaos functions for their suitability in generating message authentication codes. Appl. Soft Comput. 7(3), 1064-1071 (2007) · doi:10.1016/j.asoc.2006.05.005
[56] Li, C., Wang, S.: A new one-time signature scheme based on improved chaos hash function. Comput. Eng. Appl. 43(35), 133-136 (2007)
[57] Guo, W., Wang, X., He, D., Cao, Y.: Cryptanalysis on a parallel keyed hash function based on chaotic maps. Phys. Lett. A 373(36), 3201-3206 (2009) · Zbl 1233.94016 · doi:10.1016/j.physleta.2009.07.016
[58] Xiao, D., Peng, W., Liao, X., Xiang, T.: Collision analysis of one kind of chaos-based hash function. Phys. Lett. A 374(10), 1228-1231 (2010) · Zbl 1236.68057 · doi:10.1016/j.physleta.2010.01.006
[59] Wang, S., Shan, P.: Security analysis of a one-way hash function based on spatiotemporal chaos. Chin. Phys. B 20(9), 090504-090507 (2011) · doi:10.1088/1674-1056/20/9/090504
[60] Wang, S., Li, D., Zhou, H.: Collision analysis of a chaos-based hash function with both modification detection and localization capability. Commun. Nonlinear Sci. Numer. Simul. 17(2), 780-784 (2012) · doi:10.1016/j.cnsns.2011.06.017
[61] Zhou, Q., Liao, X., Liu, J.: Design of image Hash functions based on fluid dynamics model. Nonlinear Dyn. 67(3), 1837-1845 (2012) · Zbl 1273.94284 · doi:10.1007/s11071-011-0110-7
[62] Chain, K., Kuo, W.C.: A new digital signature scheme based on chaotic maps. Nonlinear Dyn. 74(4), 1003-1012 (2013) · Zbl 1284.94132 · doi:10.1007/s11071-013-1018-1
[63] Huang, X.: Image encryption algorithm using chaotic Chebyshev generator. Nonlinear Dyn. 67(4), 2411-2417 (2012) · doi:10.1007/s11071-011-0155-7
[64] Farschi, S.M.R., Farschi, H.: A novel chaotic approach for information hiding in image. Nonlinear Dyn. 69(4), 1525-1539 (2012) · Zbl 1255.74062 · doi:10.1007/s11071-012-0367-5
[65] Ghebleh, M., Kanso, A.: A robust chaotic algorithm for digital image steganography. Commun. Nonlinear Sci. Numer. Simul. 19(6), 1898-1907 (2014) · Zbl 1457.94015 · doi:10.1016/j.cnsns.2013.10.014
[66] Li, H., Liao, X., Li, C., Huang, H., Li, C.: Edge detection of noisy images based on cellular neural networks. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3746-3759 (2011) · Zbl 1227.68101 · doi:10.1016/j.cnsns.2010.12.017
[67] Li, H., Liao, X., Luo, M.: A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation. Nonlinear Dyn. 68(1-2), 137-149 (2012) · Zbl 1243.93033 · doi:10.1007/s11071-011-0210-4
[68] Zhou, P., Huang, K.: A new 4-D non-equilibrium fractional-order chaotic system and its circuit implementation. Commun. Nonlinear Sci. Numer. Simul. 19(6), 2005-2011 (2014) · Zbl 1369.65077 · doi:10.1016/j.cnsns.2013.10.024
[69] Merkle, RC; Brassard, G. (ed.), One way hash functions and DES, No. 435, 428-446 (1990), Berlin · Zbl 1533.94049 · doi:10.1007/0-387-34805-0_40
[70] Damgard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) Advances in Cryptology CRYPTO 89. Lecture Notes in Computer Science, vol. 435, pp. 416-427. Springer, Berlin (1990) · Zbl 0724.68029
[71] Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. Benjamin, New York (1968) · Zbl 0715.70004
[72] Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21(3), 749-761 (2004) · Zbl 1049.94009 · doi:10.1016/j.chaos.2003.12.022
[73] Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore (1998) · Zbl 0908.93005
[74] Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(3), 617-656 (1985) · Zbl 0989.37516 · doi:10.1103/RevModPhys.57.617
[75] NIST Special Publication 800-22 rev1a, A statistical test suite for the validation of random number generators and pseudo random number generators for cryptographic applications. http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html (2010). Accessed 23 Sept 2014
[76] Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656-715 (1949) · Zbl 1200.94005 · doi:10.1002/j.1538-7305.1949.tb00928.x
[77] Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996) · Zbl 0868.94001 · doi:10.1201/9781439821916
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.